Chemistry Letters 2002
819
References and Notes
of the ꢀ-, ꢁ-, and ꢂ-positions to the germanium atom,
respectively.
1
a) R. Sato, T. Goto, and M. Saito, Yuki Gosei Kagaku Kyokaishi, 48, 797
(1990). b) B. S. Davidson, T. F. Molinski, L. R. Barrows, and C. M. Ireland,
J. Am. Chem. Soc., 113, 4709 (1991). c) M. Litaudon and M. Guyot,
Tetrahedron Lett., 32, 911 (1991). d) A. Ishii and J. Nakayama, Rev.
Heteroat. Chem., 19, 1 (1998). e) R. Okazaki, Phosphorus, Sulfur Silicon
Relat. Elem., 168–169, 41 (2001).
Trisulfide 5 is fairly stable toward air and moisture, and dose
not undergo any decomposition by the thermolysis at 100 ꢁC in
solution and even at 230 ꢁC in the solid state. On the other hand,
triselenide 6 gradually decomposed with liberation of red
selenium on standing in a hexane or CHCl3 solution for a few
hours to give a complex mixture. Of particular note among the
reactivities of 5 and 6 is that they gave quite different products on
dechalcogenation reactions with triphenylphosphine. Desulfur-
ization of 5 with 3 equiv. of Ph3P in C6D6 at 80 ꢁC for 24 h gave
the 2-germanaphthalene 2 (76%) together with Ph3P ¼ S (91%)
as judged by 1H NMR. On the other hand, deselenation of 6 under
similar reaction conditions for 3 h afforded a novel heterocycle, 1-
selena-2,5-digermacyclopentane 7 (82%), as an inseparable
mixture of the structuralisomers together with Ph3P ¼ Se
(80%) (Scheme 2).
2
a) N. Tokitoh, H. Suzuki, T. Matsumoto, Y. Matsuhashi, R. Okazaki, and
M. Goto, J. Am. Chem. Soc., 113, 7047 (1991). b) N. Tokitoh, T.
Matsumoto, and R. Okazaki, Tetrahedron Lett., 32, 6143 (1991). c) T.
Matsumoto, N. Tokitoh, and R. Okazaki, Organometallics, 14, 1008
(1995).
3
4
5
T. Matsumoto, Y. Matsui, Y. Nakaya, and K. Tatsumi, Chem. Lett., 2001,
60.
N. Tokitoh, T. Matsumoto, and R. Okazaki, Tetrahedron Lett., 33, 2531
(1992).
For reviews of silaaromatic compounds, see: a) G. Raabe and J. Michl,
Chem. Rev., 85, 419 (1985). b) G. Raabe and J. Michl, in ‘‘The Chemistry
of Organic Silicon Compounds,’’ ed. by S. Patai and Z. Rappoport, Wiley,
New York (1989), Chap. 17. c) A. G. Brook and M. A. Brook, Adv.
Organomet. Chem., 39, 71 (1996). d) Y. Apeloig and M. Karni, in ‘‘The
Chemistry of Organic Silicon Compounds,’’ ed. by Z. Rappport and Y.
Apeloig, Wiley, New York (1998), Vol. 2.
´
For reviews of germaaromatic compounds, see: a) J. Barrau, J. Escudie,
6
7
8
´
and J. Satge, Chem. Rev., 90, 283 (1990). b) V. Y. Lee, A. Sekiguchi, M.
Ichinohe, and N. Fukaya, J. Organomet. Chem., 611, 228 (2000).
V. J. Minkin, M. N. Glukhovtsev, Y. B. Simkin, in ‘‘Aromaticity and
Antiaromaticity; Electronic and Structural Aspects,’’ Wiley, New York
(1994).
a) N. Tokitoh, K. Wakita, R. Okazaki, S. Nagase, P. v. R. Schleyer, and H.
Jiao, J. Am. Chem. Soc., 119, 6951 (1997). b) K. Wakita, N. Tokitoh, R.
Okazaki, S. Nagase, P. v. R. Schleyer, and H. Jiao, J. Am. Chem. Soc., 121,
11336 (1999).
9
N. Nakata, N. Takeda, and N. Tokitoh, Organometallics, 20, 5507 (2001).
10 5: mp 220–223 ꢁC; 1H NMR (300 MHz, CDCl3) ꢃ À0:10 (s, 9H), À0:06 (s,
9H), 0.02 (s, 18H), 0.05 (s, 9H), 0.09 (s, 9H), 1.32 (s, 1H), 2.12 (br s, 2H),
4.44 (s, 1H), 6.32 (br s, 1H), 6.36 (d, J ¼ 12:9 Hz, 1H), 6.44 (br s, 1H), 7.14
(d, J ¼ 12:9 Hz, 1H), 7.14–7.32 (m, 4H); 13C NMR (75 MHz, CDCl3) ꢃ
0.40 (q), 0.67 (q), 0.69 (q), 0.76 (q), 0.80 (q), 1.14 (q), 29.59 (d), 29.90 (d),
30.64 (d), 46.96 (d), 122.45 (d), 125.45 (s), 127.45 (s), 127.94 (d), 128.12
(d), 128.95 (d), 131.85 (d), 134.13 (d), 134.37 (d), 135.50 (s), 141.49 (d),
146.36 (s), 151.33 (s), 151.66 (s); FABMS m=z 836 [Mþ], 740[(M-S3)þ].
Anal. Calcd for C36H66GeS3Si6: C, 51.71; H, 7.96%. Found: C, 51.63; H,
7.99%.
11 6: mp 203–205 ꢁC (decomp.); 1H NMR (300 MHz, CDCl3) ꢃ À0:11 (s,
9H), À0:07 (s, 9H), 0.01 (s, 18H), 0.09 (s, 9H), 0.12 (s, 9H), 1.30 (s, 1H),
2.22 (s, 2H), 5.06 (s, 1H), 6.30 (br s, 1H), 6.37 (d, J ¼ 12:9 Hz, 1H), 6.42
(br s, 1H), 7.06 (d, J ¼ 12:9 Hz, 1H), 7.07–7.33 (m, 4H); 13C NMR
(75 MHz, CDCl3) ꢃ 0.54 (q), 0.72 (q), 0.95 (q), 1.31 (q), 29.49 (d), 29.75
(d), 30.64 (d), 44.12 (d), 122.58 (d), 124.38 (s), 127.61 (d), 127.65 (d),
127.84 (d), 131.56 (d), 131.71 (d), 133.65 (s), 133.70 (d), 137.16 (s),
139.97 (d), 146.04 (s), 151.34 (s), 151.61 (s); 77Se NMR (57 MHz, CDCl3)
ꢃ 296.0, 531.4, 716.9; FABMS m=z 977 [Mþ], 819[(M-Se2)þ], 740[(M-
Se3)þ]. Anal. Calcd for C36H66GeSe3Si6: C, 44.26; H, 6.81%. Found: C,
44.04; H, 6.82%.
Scheme 2.
The structure of 7 was confirmed by its 1H and 77Se NMR,
high-resolution FAB-MS and elemental analysis.15 In the 1H and
77Se NMR spectra of 7, two structuralisomers were observed
(major : minor ¼ 4 : 3, ꢃSe; À451:2, À447:4). These two isomers
are most likely assigned to 7a and 7b judging from the
consistency with their 1H NMR spectra and the calculated
relative energies for the four isomeric structures 7a–d (Figure 2).
Although the formation mechanism of 7 is not clear at present,
one might be able to postulate the intermediacy of extremely
reactive selenagermirane derivative 8 and/or its ring opened
biradicalisomer 9 and their subsequent coupling reactions with
the exhaustively deselenated product 2 (Scheme 2). The exclusive
formation of the five-membered ring compounds 5 and 6 in the
reactions of 2 may be due to the steric effect of Tbt group and/or
the instability of the chalcogenagermirane skeletons. Further
investigation on the reactivity of 2, 5, and 6 is currently in
progress.
12 N. Nakata, N. Takeda, and N. Tokitoh, Organometallics, submitted.
13 The intensity data for 6 were collected on a Rigaku/MSC Mercury CCD
diffractometer. Crystaldata of
6:
C
36H66GeSe3Si6, fw ¼ 976:90,
ꢁ
ꢀ
T ¼ 103 K, triclinic, space group P1 (#2), a ¼ 9:484ð4Þ A, b ¼
ꢁ
ꢁ
ꢀ
ꢀ
12:021ð4Þ A, c ¼ 22:902ð9Þ A, ꢀ ¼ 75:562ð16Þ , ꢂ ¼ 81:901ð18Þ , ꢁ ¼
68:746ð13Þ ꢁ, V ¼ 2352:8ð15Þ A , Z ¼ 2, Dcalcd ¼ 1:379 g/cm3, R1
ꢀ 3
(I > 2ꢄðIÞÞ ¼ 0:045, wR2 ðall dataÞ ¼ 0:112 (CCDC 187028).
14 S. Ogawa, T. Kikuchi, S. Niizuka, and R. Sato, J. Chem. Soc., Chem.
Commun., 1994, 1593.
15 7: mp 203–205 ꢁC (decomp.); 1H NMR (300 MHz, CDCl3) ꢃ 0.06 (s,
SiMe3, major), 0.13 (s, SiMe3, major), 0.14 (s, SiMe3, minor), 0.26 (s,
SiMe3, minor), 0.27 (s, SiMe3, minor), 0.31 (s, SiMe3, major), 0.34 (s,
SiMe3, minor), 1.42 (s, Tbt-p-methine, major), 1.44 (s, Tbt-p-methine,
minor), 2.03 (br s, Tbt-o-methine, major), 2.28 (br s, Tbt-o0-methine,
major), 2.43 (br s, Tbt-o-methine, minor), 2.69 (br s, Tbt-o0-methine,
minor), 3.43 (s, GeCH, major), 3.93 (s, GeCH, minor), 6.12 (d, J ¼ 7:2 Hz,
Ar, major), 6.50–6.73 (m, Ar, major þ minor), 6.90–7.06 (m, Ar,
major þ minor); 77Se NMR (57 MHz, CDCl3) ꢃ À451:2 (major),
À447:4 (minor). Anal. Calcd for C72H132Ge2SeSi12: C, 55.47; H,
8.53%. Found: C, 55.45; H, 8.50%. HRMS (FAB): found m=z 1561.5237
([M þ H]þ), calcd for C72H133Ge2SeSi12 1561.5167.
Figure 2. Calculated relative energies for the four
isomers of 7 (kcal/mol, B3LYP/6-31G(d)).
This work was partially supported by a Grant-in-Aid for COE
Research on Elements Science (No. 12CE2005) and Grants-in-
Aid for Scientific Research (Nos. 11304045 and 11166250) from
the Ministry of Education, Science, Sports and Culture, Japan.