A. T. Carmona et al. / Tetrahedron Letters 43 (2002) 8543–8546
8545
Table 1.
2. See e.g.: (a) Goss, P. E.; Baker, M. A.; Carver, J. P.;
Dennis, J. W. Clin. Cancer Res. 1995, 1, 935; (b) Das, P.
C.; Robert, J. D.; White, S. L.; Olden, K. Oncol. Res.
1995, 7, 425.
3. For reviews, see e.g.: (a) Cossy, J.; Vogel, P. Studies in
Natural Products Chemistry; Atta-ur-Rahman, Ed.;
Elsevier: Amsterdam, 1993; Vol. 12, pp. 275–363; (b) El
Nemr, A. Tetrahedron 2000, 56, 8579–8629; (c) El Ashry,
E. S. H.; Rahed, N.; Shobier, A. H. S. Pharmazie 2000,
55, 331–348.
4. See e.g.: lentiginosine and derivatives: (a) Brandi, A.;
Cicchi, S.; Cordero, F. M.; Frignoli, R.; Goti, A.;
Picasso, S.; Vogel, P. J. Org. Chem. 1995, 60, 6806–6812;
(b) Cardona, F.; Goti, A.; Picasso, S.; Vogel, P.; Brandi,
A. J. Carbohydr. Chem. 2000, 19, 585–601; (c) pentahy-
droxyindolizidines: Chen, Y.; Vogel, P. J. Org. Chem.
1994, 59, 2487–2496; Picasso, S.; Chen, Y.; Vogel, P.
Carbohydr. Lett. 1993, 1, 1–8; (d) Izquierdo, I.; Plaza, M.
J.; Robles, R.; Mota, A. J. Tetrahedron: Asymmetry 1998,
9, 1015–1027; 5-azacastanospermine: (e) Søndergard, K.;
Liang, X.; Bols, M. Chem. Eur. J. 2001, 7, 2324–2331.
5. (a) Patil, N. T.; Tilekar, J. N.; Dhavale, D. D. J. Org.
Chem. 2001, 6, 1065–1074; (b) Back, T. G.; Nakajima, K.
Org. Lett. 1999, 1, 261–263; (c) Kawakami, T.; Ohtake,
H.; Arakawa, H.; Okachi, T.; Imada, Y.; Murahashi,
S.-I. Org. Lett. 1999, 1, 107–110; (d) Clark, R. B.; Pear-
son, W. H. Org. Lett. 1999, 1, 349–351.
Comp.
H-1
H-2
H-6
H-7
15
18
17
19
4.06
5.42
3.99
5.33
4.42
5.33
4.31
5.29
3.76
4.89
3.50
5.08
3.94
5.05
3.40
4.28
only indolizidine 17 was obtained in 94% yield. The
spectroscopic data of 15, 16 and 17 confirmed the
proposed structures.15 The absolute configuration of
compounds 15 and 17 were based upon NOEs between
pair of protons H7/H8-b for compound 15 and NOEs
between H7/H8a, H7/H8-a and H6/H8-b for com-
pound 17. The indolizidine character of compounds 15
1
and 17 was demonstrated with the H NMR spectra of
their corresponding peracetates derivatives 18 and 19
(Table 1). A deshielding of the resonances for H1, H2,
H6 and H7, was observed confirming the proposed
structures. In the case of compound 16, the
pyrrolizidine structure and absolute configuration was
based on its MSCI spectrum, where a loss of a hydroxy-
methyl group were observed and on its 1H NMR
spectrum where NOEs between pair of protons H7a/
H7-a, H5/H7-a, H6/H7-b and H3-b/H-8 were
observed.
6. Davis, B.; Bell, A. A.; Nash, R. J.; Watson, A. A.;
Griffiths, R. C.; Jones, M. G.; Smith, C.; Fleet, G. W. J.
Tetrahedron Lett. 1996, 37, 8565–8568.
This work presents a new synthetic approach for the
construction of polyhydroxyindolizidines based on syn-
hydroxylation of alkenyl pyrrolidines followed by
cyclization. High stereoselectivity is obtained when
using double asymmetric reactions. The present paper
discloses for the first time the preparation of tetra-
hydroxyderivatives 8, 9, 15, 17.
7. Cardona, F.; Robina, I.; Vogel, P. J. Carbohydr. Chem.
2000, 19, 555–571.
8. Lo´pez-Herrera, F. J.; Pino Gonza´lez, M. S. Carbohydr.
Res. 1986, 152, 283–291 and references cited therein.
9. Donohoe, T. J.; Moore, P. R.; Beddoes, R. L. J. Chem.
Soc., Perkin Trans. 1 1997, 43–51.
10. Typical procedure for osmylation: Alkene 2 or 3 (1
mmol) was dissolved in acetone:H2O 4:1 (3 mL), N-
methylmorpholine (4 equiv.) and OsO4/ButOH (0.1
equiv.) was added and the reaction mixture stirred for 24
h at rt. An excess of Na2SO3 was added and the mixture
stirred for 30 min at rt and then extracted with AcOEt.
The combined extracts were washed with brine and
water, dried and evaporated. Purification was achieved by
column chromatography with DCM:acetone 25:1 as
eluant.
Biological evaluation of the new molecules will be
carried out and be reported in a forthcoming paper.
Acknowledgements
We thank Professor Pierre Vogel of the ‘Institut des
Sciences Mole´culaires de l’Ecole Polytechnique Fe´d-
e´rale de Lausanne, Suisse’ for discussions. This work
was supported by the Ministerio de Educacio´n y Cul-
tura, (PB97/0730), the Junta de Andaluc´ıa, Spain
(FQM 134). This work is part of the Action COST-
D13-0001/99.
11. Kolb, K. C.; van Nieuwenhze, M. S.; Sharpless, K. B.
Chem. Rev. 1994, 2483–2547.
1
12. Selected data for 6: H NMR (500 MHz, CDCl3, l ppm,
J Hz) l 5.27 (t, 1H, J8,8a=J8,7=9.4, H-8), 5.21 (ddd, 1H,
J
7,6=6.9, J7,6%=8.8, H-7), 3.80 (dd, 1H, J1,8a=2.8, H-8a),
2
3.04 (dd, 1H, J6,6%=17.8, H-6), 2.49 (dd, 1 H, H-6%).
Selected data for 7: H NMR (300 MHz, CDCl3, l ppm,
1
J Hz) l 5.61 (t, 1H, J8,8a=J8,7=4.6, H-8), 5.36 (td, 1H,
References
J7,6=7.2, H-7), 4.21 (dd, 1H, J1,8a=3.2, H-8a), 3.77 (d,
2H, H-6).
1. See e.g.: (a) Casiraghi, G.; Zanardi, F. Chem. Rev. 1995,
95, 1677–1716; (b) Iminosugars as Glycosidase Inhibitors;
Stu¨tz, A. E., Ed.; Wiley-VCH: Weinheim, 1999; (c) Zeng,
Y.; Pan, Y. T.; Asano, N.; Nash, R. J.; Elbein, A. D.
Glycobiology 1997, 7, 297; (d) Asano, N.; Nash, R. J.;
Molyneux, R. J. Fleet, G. W. Tetrahedron: Asymmetry
2000, 11, 1645–1680; (e) Lillelund, V. H.; Jensen, H. H.;
Liang, X.; Bols. M. Chem. Rev. 2002, 102, 515–553.
13. Guzma´n Pe´rez, A.; Corey, E. J. Tetrahedron Lett. 1997,
38, 5941–5944.
14. Typical procedure for asymmetric dihydroxylation: To a
solution of alkene 10 (0.1 mmol) in ButOH:H2O 1:1 (1.2
mL) at 0°C, AD-mixa or AD-mixb (0.14 g) and
MeSO2NH2 (0.1 equiv.) was added. The reaction mixture
was stirred at 0°C for x days (AD-mixa, x=1; AD-mixb,
x=2). Work-up procedure is as described for osmylation.