10.1002/anie.201803220
Angewandte Chemie International Edition
COMMUNICATION
conducted by treating THF and d8-THF with alkene 50 in two
different vessels or in one vessel under the optimized conditions,
resulting in kH/kD 1.6 and 2.4 respectively. The KIE data
indicated that the CH cleavage was reversible and might occur
before the rate-determining step.[16]
a promising platform to tune the strength of HAT ability for site-
selective and stereoselective CH activation.
Acknowledgements
A plausible mechanistic pathway was proposed in light of all
the experimental data (Scheme 4e). The formation of a carbon-
centered radical was promoted by visible-light-activated *eosin Y
through a HAT process. The derived carbon radical was
subsequently trapped by an electron-deficient alkene to
selectively form radical adduct B. The RHAT process between
eosin Y-H II to radical B exhibited a high free energy barrier
(32.3 kcal/mol) based on DFT calculation (path a).[17] Instead,
another THF molecule and radical B might undergo a reversible
HAT process (19.2 kcal/mol) to deliver the desired alkylation
product, followed by RHAT between THF radical A and eosin Y-
H II (19.9 kcal/mol) to regenerate ground state eosin Y catalyst
(path b). However, we were unable to exclude the possibility of
path a at current stage based on the deuterium labeling study
(Scheme S2).[17]
The authors thank Mr. Feng Hong-Yu (NUS) for assistance with
the development of chemistry. We are grateful for the financial
support provided by the National University of Singapore and the
Ministry of Education (MOE) of Singapore (R-143-000-645-112,
R-143-000-665-114), GSK-EDB (R-143-000-687-592), and
A*STAR RIE2020 AME (R-143-000-690-305).
Keywords: eosin Y • photocatalysis • organocatalysis • CH
functionalization • hydrogen atom transfer
[1] For selected reviews, see: a) N. A. Romero, D. A. Nicewicz, Chem. Rev.
2016, 116, 10075; b) D. Ravelli, S. Protti, M. Fagnoni, Chem. Rev. 2016,
116, 9850; c) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev.
2013, 113, 5322; d) J. Xuan, W.-J. Xiao, Angew. Chem. Int. Ed. 2012,
51, 6828; Angew. Chem. 2012, 124, 6934; e) J. M. R. Narayanam, C. R.
J. Stephenson, Chem. Soc. Rev. 2011, 40, 102.
[2]
a) L. Capaldo, D. Ravelli, Eur. J. Org. Chem. 2017, 2056; b) D. Ravelli,
D. Dondi, M. Fagnoni, A. Albini, Chem. Soc. Rev. 2009, 38, 1999.
a) V. De Waele, O. Poizat, M. Fagnoni, A. Bagno, D. Ravelli, ACS
Catal. 2016, 6, 7174; b) S. Kamijo, G. Takao, K. Kamijo, M. Hirota, K.
Tao, T. Murafuji, Angew. Chem. Int. Ed. 2016, 55, 9695; Angew. Chem.
2016, 128, 9847; c) J. J. Murphy, D. Bastida, S. Paria, M. Fagnoni, P.
Melchiorre, Nature 2016, 532, 218; d) S. Kamijo, G. Takao, K. Kamijo,
T. Tsuno, K. Ishiguro, T. Murafuji, Org. Lett. 2016, 18, 4912; e) J. G.
West, T. A. Bedell, E. J. Sorensen, Angew. Chem. Int. Ed. 2016, 55,
8923; Angew. Chem. 2016, 128, 9069; f) N. Ishida, Y. Masuda, S.
Uemoto, M. Murakami, Chem. Eur. J. 2016, 22, 6524; g) J. G. West, D.
Huang, E. J. Sorensen, Nat. Commun. 2015, 6, 10093; h) S. Kamijo, K.
Tao, G. Takao, H. Tonoda, T. Murafuji, Org. Lett. 2015, 17, 3326; i) M.
Nagatomo, S. Yoshioka, M. Inoue, Chem. Asian J. 2015, 10, 120; j) Y.
Amaoka, M. Nagatomo, M. Watanabe, K. Tao, S. Kamijo, M. Inoue,
Chem. Sci. 2014, 5, 4339; k) C. W. Kee, K. F. Chin, M. W. Wong, C. H.
Tan, Chem. Commun. 2014, 50, 8211; l) J.-B. Xia, C. Zhu, C. Chen, J.
Am. Chem. Soc. 2013, 135, 17494; m) S. Kamijo, T. Hoshikawa, M.
Inoue, Org. Lett. 2011, 13, 5928; n) D. Dondi, S. Protti, A. Albini, S. M.
Carpio, M. Fagnoni, Green. Chem. 2009, 11, 1653.
[3]
Scheme 5. Eosin Y-based HAT for CH functionalizations. [a] With 2.5 equiv
of NaOAc as an additive.
The eosin Y-based direct HAT process provides an extremely
convenient and green pathway for CH activation, who’s
synthetic utility can be extended far beyond alkylation. Our very
preliminary results illustrated that this visible-light-mediated CH
activation protocol can be extended to vinylation, allylation,
arylation, and cyanation (Scheme 5).
[4]
[5]
For selected recent examples, see: a) M. H. Shaw, V. W. Shurtleff, J. A.
Terrett, J. D. Cuthbertson, D. W. C. MacMillan, Science 2016, 352,
1304; b) S. Mukherjee, B. Maji, A. Tlahuext-Aca, F. Glorius, J. Am.
Chem. Soc. 2016, 138, 16200.
For selected recent examples, see: a) G. J. Choi, Q. Zhu, D. C. Miller,
C. J. Gu, R. R. Knowles, Nature 2016, 539, 268; b) J. C. K. Chu, T.
Rovis, Nature 2016, 539, 272.
In summary, we have developed a visible-light-mediated
alkylation of CH bonds with eosin Y as the catalyst. This
transformation accommodates an extremely broad substrate
scope, and is distinguished by its operational simplicity, green
protocol, and amenability to large-scale synthesis via
continuous-flow technology. A variety of synthons can be easily
achieved by this method, which will likely find wide industrial
application. Moreover, to the best of our knowledge, this study
represents the first example of using xanthene dyes as direct
HAT photocatalysts. Its metal-free, readily available, and low-
costing nature, in addition to light absorption in the visible region
and unlikely side reactions, makes eosin Y an ideal direct HAT
photocatalyst, with great promise for CH activation with a
diverse range of functionalities. Unlike the well-established
anionic eosin Y-based photoredox process, neutral eosin Y is
the active catalyst to promote the photo-HAT transformation.
Moreover, the easy structural modification of xanthenes provides
[6]
[7]
[8]
D. Ravelli, S. Protti, M. Fagnoni, Acc. Chem. Res. 2016, 49, 2232.
D. P. Hari, B. König, Chem. Commun. 2014, 50, 6688.
H. G. Viehe, Z. Janousek, R. Merenyi, L. Stella, Acc. Chem. Res.1985,
18, 148.
[9]
M. K. Nielsen, B. J. Shields, J. Liu, M. J. Williams, M. J. Zacuto, A. G.
Doyle, Angew. Chem. Int. Ed. 2017, 56, 7191; Angew. Chem. 2017,
129, 7297.
[10] T. Saito, T. Obitsu, T. Kondo, T. Matsui, Y. Nagao, K. Kusumi, N.
Matsumura, S. Ueno, A. Kishi, S. Katsumata, Y. Kagamiishi, H. Nakai,
M. Toda, Bioorg. Med. Chem. 2011, 19, 5432.
[11] R. Zhou, H. Liu, H. Tao, X. Yu, J. Wu, Chem. Sci. 2017, 8, 4654.
[12] a) K. N. Lee, Z. Lei, M.-Y. Ngai, J. Am. Chem. Soc. 2017, 139, 5003; b)
L. Capaldo, M. Fagnoni, D. Ravelli, Chem. Eur. J. 2017, 23, 6527.
[13] a) M. Majek, A. J. Wangelin, Acc. Chem. Res. 2016, 49, 2316; b) M.
Majek, F. Filace, A. J. Wangelin, Beilstein J. Org. Chem. 2014, 10, 981.
[14] Even though good conversions have been achieved with most
substrates tested within 24 h using white LED, we expected that blue
LED would afford more efficient transformations. See Table S4 for
comparison studies.
This article is protected by copyright. All rights reserved.