H. M. L. Da6ies et al. / Tetrahedron Letters 43 (2002) 4981–4983
4983
Foundation (CHE 0092490) and the National Institutes
of Health (GM57425) is gratefully acknowledged.
References
1. Davies, H. M. L.; Antoulinakis, E. G. J. Organomet.
Chem. 2001, 617–618, 37.
2. (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern
Catalytic Methods for Organic Synthesis with Diazo Com-
pounds; Wiley-Interscience: New York, 1998; p. 115; (b)
Ye, T.; McKervey, M. A. Chem. Rev. 1993, 93, 1091; (c)
Spero, D. M.; Adams, J. Tetrahedron Lett. 1992, 33, 1133.
3. Davies, H. M. L.; Hodges, L. M.; Matasi, J. J.; Hansen,
T.; Stafford, D. G. Tetrahedron Lett. 1998, 39, 3317.
4. Davies, H. M. L.; Hansen, T.; Churchill, M. R. J. Am.
Chem. Soc. 2000, 122, 3063.
5. (a) Davies, H. M. L.; Stafford, D. G.; Hansen, T. Org.
Lett. 1999, 1, 233; (b) Davies, H. M. L.; Stafford, D. G.;
Hansen, T. Tetrahedron Lett. 2000, 31, 2035; (c) Davies,
H. M. L.; Ren, P.; Jin, Q. Org. Lett. 2001, 3, 3587; (d)
Mu¨ller, P.; Tohill, S. Tetrahedron 2000, 56, 1725.
6. Davies, H. M. L.; Ren, P. J. Am. Chem. Soc. 2001, 123,
2070.
7. (a) Davies, H. M. L.; Hansen, T.; Hopper, D.; Panaro, S.
A. J. Am. Chem. Soc. 1999, 121, 6509; (b) Davies, H. M.
L.; Venkataramani, C. Org. Lett. 2001, 3, 1773; (c)
Axten, J. M.; Ivy, R.; Krim, L.; Winkler, J. D. J. Am.
Chem. Soc. 1999, 121, 6511.
8. (a) Davies, H. M. L.; Antoulinakis, E. G.; Hansen, T.
Org. Lett. 1999, 1, 383; (b) Davies, H. M. L.; Antouli-
nakis, E. G. Org. Lett. 2000, 2, 3153.
Scheme 1.
9. Davies, H. M. L.; Townsend, R. J. J. Org. Chem. 2001,
66, 6595.
precursor (+)-15 (55% yield and 88% ee). Catalytic
hydrogenation (97% yield) followed by introduction of
the hexamethyleneimine functionality furnished (+)-
cetiedil 5 in 94% yield with 88% ee.16
10. Roxburgh, C. J.; Ganellin, C. R.; Shiner, M. A. R.;
Benton, D. C. H.; Dunn, P. M.; Ayalew, Y.; Jenkinson,
D. H. J. Pharm. Pharmacol. 1996, 38, 851–857.
11. (a) Robba, M.; Le Guen, Y. Chim. The´rap. 1967, 2, 120;
(b) Benjamin, L. J.; Berkowitz, L. R.; Orringer, E.;
Mankad, V. N.; Prasad, A. S.; Lewkow, L. M.; Chillar,
R. K.; Peterson, C. M. Blood 1986, 67, 1332; (c)
Innothe´ra. US Patent. 3 377 592, 1983.
12. (a) Roxburgh, C. J.; Ganellin, C. R.; Athmani, S.; Bisi,
A.; Quaglia, W.; Benton, D. C. H.; Shiner, M. A. R.;
Malik-Hall, M.; Haylett, D. G.; Jenkinson, D. H. J. Med.
Chem. 2001, 33, 3233; (b) Ref. 10; (c) Abu-Salah, K. M.;
Gambo, A. A. Life Sci. 2002, 70, 1003.
In summary, the intermolecular C–H activation chem-
istry of methyl thiophen-3-yldiazoacetate 3 is not as
general as that reported for substituted phenyldiazoac-
etates. However, C–H activation by means of C–H
insertion can be carried out at allylic positions and a to
nitrogen. The synthetic potential of this chemistry was
illustrated by a short asymmetric synthesis of (+)-
cetiedil.
13. Morot Gaudrry-Talarmain, Y.; Diebler, M. F.; Robba,
M.; Lancelot, J. C.; Lesbats, B.; Israe¨l, M. Eur. J. Phar-
macol. 1989, 166, 327.
Supplementary material. Detailed experimental condi-
tions for the synthesis of compounds 3–16.
14. Davies, H. M. L.; Bruzinski, P.; Hutcheson, D. K.;
Kong, N.; Fall, M. J. J. Am. Chem. Soc. 1996, 118, 6897.
15. Baum, J. S.; Davies, H. M. L.; Smith, H. D. Synth.
Commun. 1987, 17, 1709.
Acknowledgements
16. In analogy to 9, the absolute stereochemistry of (+)-5 is
predicted to be S.
Financial support of this work by the National Science