1060
B. Pelotier et al.
LETTER
(9) (a) Mekmouche, Y.; Hummel, H.; Ho, R. Y. N.; Que, L. Jr.;
Schünemann, V.; Thomas, F.; Trautwein, A. X.; Lebrun, C.;
Gorgy, K.; Leprêtre, J.-C.; Collomb, M.-N.; Deronzier, A.;
Fontecave, M.; Ménage, S. Chem.–Eur. J. 2002, 8, 1196.
(b) Saito, B.; Katsuki, T. Tetrahedron Lett. 2001, 42, 3873.
(c) Brinksma, J.; La Crois, R.; Feringa, B. L.; Donnoli, M. I.;
Rosini, C. Tetrahedron Lett. 2001, 42, 4049.
(10) (a) Bolm, C.; Bienewald, F. Angew. Chem., Int. Ed. Engl.
1995, 34, 2640. (b) Vetter, A. H.; Berkessel, A. Tetrahedron
Lett. 1998, 39, 1741. (c) Skarzewski, J.; Ostrycharz, E.;
Siedlecka, R. Tetrahedron: Asymmetry 1999, 10, 3457.
(d) Karpyshev, N. N.; Yakovleva, O. D.; Talsi, E. P.;
Bryliakov, K. P.; Tolstikova, O. V.; Tolstikov, A. G. J. Mol.
Catal. A: Chem. 2000, 157, 91. (e) Ohta, C.; Shimizu, H.;
Kondo, A.; Katsuki, T. Synlett 2002, 161.
times: 4.2 min(thioanisole), 7.1 min (internal standard), 11.7
min (R-methyl-phenylsulfoxide), 13.1 min (S-methyl-
phenylsulfoxide), 14.3 min (methyl-phenylsulfone).
(17) (a) Canali, L.; Cowan, E.; Deleuze, H.; Gibson, C. L.;
Sherrington, D. C. J. Chem. Soc., Perkin Trans. 1 2000,
2055. (b) Reger, T. S.; Janda, K. D. J. Am. Chem. Soc. 2000,
122, 6929. (c) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem.
Soc. 1998, 120, 4901.
(18) 4-Bromo-1-hydroxy-2-naphthaldehyde was prepared by
bromination of 1-hydroxy-2-naphthaldehyde with N-
bromosuccinimide according to a literature procedure19 and
isolated in 60% yield. Spectroscopic data: 1H NMR (CDCl3,
250 MHz) = 12.60 (s, 1 H), 9.92 (s, 1 H), 8.49 (d, 1 H, J =
8.5 Hz), 8.19 (d, 1 H, J = 8.5 Hz), 7.80 (t, 1 H, J = 8.5 Hz),
7.80 (s, 1 H), 7.63 (t, 1 H, J = 8.5 Hz); 13C NMR (CDCl3, 62
MHz) = 195.2, 161.3, 135.5, 131.8, 129.4, 127.2, 126.9,
125.8, 124.8, 114.8, 112.1.
(11) Green, S. D.; Monti, C.; Jackson, R. F. W.; Anson, M. S.;
Macdonald, S. J. F. Chem. Commun. 2001, 2594.
(12) Bryliakov, K. P.; Karpyshev, N. N.; Fominsky, S. A.;
Tolstikov, A. G.; Talsi, E. P. J. Mol. Catal. A: Chem. 2001,
171, 73.
(19) Boehlow, T. R.; Harburn, J. J.; Spilling, C. D. J. Org. Chem.
2001, 66, 3111.
(20) Compound 10: 1H NMR (CDCl3, 250 MHz) = 14.85 (br. s,
1 H), 8.10 (s, 1 H), 8.00 (d, 1 H, J = 2.0 Hz), 7.51 (d, 1 H, J
= 2.0 Hz), 3.99 (dd, 1 H, J = 11.5, 2.5 Hz), 3.69 (dd, 1 H, J
= 11.5, 9.5 Hz), 3.07 (dd, 1 H, J = 9.5, 2.5 Hz), 1.00 (s, 9 H);
13C NMR (CDCl3, 62 MHz) = 166.5, 164.6, 149.9, 141.0,
117.0, 92.6, 78.2, 75.9, 61.8, 32.9, 26.8 (3 C); MS (ES) m/z
= 474 (M + H+).
(13) Compound 5: 1H NMR (CDCl3, 250 MHz) = 10.30 (s, 1
H), 7.15 (m, 2 H), 6.08 (ddt, 1 H, J = 17.0, 10.5, 5.0 Hz), 5.52
(dd, 1 H, J = 17.0, 1.5 Hz), 5.33 (dd, 1 H, J = 10.5, 1.5 Hz),
4.46 (br. d, 2 H, J = 5.0 Hz), 3.98 (br. t, 2 H, J = 5.0 Hz), 2.46
(br. t, 2 H, J = 7.0 Hz), 1.85 (m, 4 H), 1.41 (s, 9 H); 13C NMR
(CDCl3, 62 MHz) = 190.4, 179.2, 156.5, 154.8, 145.6,
132.7, 130.3, 122.5, 117.5, 108.3, 79.9, 67.7, 35.2, 33.5, 30.7
(3 C), 28.5, 21.4; MS (ES) m/z = 335 (M + H+), 279, 251,
233.
(21) Compound 11: 1H NMR (CDCl3, 250 MHz) = 13.57 (br. s,
1 H), 8.39 (d, 1 H, J = 8.0 Hz), 7.98 (d, 1 H, J = 8.0 Hz), 7.70
(m, 1 H), 7.67 (t, 1 H, J = 8.0 Hz), 7.49 (t, 1 H, J = 8.0 Hz),
7.01 (s, 1 H), 4.06 (dd, 1 H, J = 11.5, 3.0 Hz), 3.76 (br. t, 1
H, J = 10.5 Hz), 3.16 (m, 1 H), 1.07 (s, 9 H); 13C NMR
(CDCl3, 62 MHz) = 177.1, 162.2, 135.9, 131.5, 130.7,
127.7, 126.1, 125.5, 109.4, 107.0, 75.2, 62.3, 33.5, 27.2 (3
C); MS (ES) m/z = 350 and 352 (M + H+).
(22) Typical experimental procedure: To a 0.03 M solution of
ligand in CH2Cl2 (0.25 mL, 7.5 mol, 0.015 equiv) was
added a 0.02 M solution of VO(acac)2 in CH2Cl2 (0.25 mL,
5 mol, 0.01 equiv) and the resulting mixture was stirred at
r.t. for 30 min. A 1 M solution of sulfide in CH2Cl2 (0.5 mL,
0.5 mmol, 1 equiv) was added and after 30 min stirring at r.t.,
the reaction mixture was cooled down to 0 °C. After 15 min
at 0 °C, 27% H2O2 in H2O (65 L, 1.2 mmol, 1.2 equiv) was
added dropwise. The mixture was stirred at 0 °C for 16 h and
the solvent evaporated. The crude residue was purified by
column chromatography (silica gel, EtOAc–cyclohexane).
(14) Hofsløkken, N. U.; Skattebøl, L. Acta Chem. Scand. 1999,
53, 258.
(15) Chiral amino acids failed to react with supported
salicylaldehyde 6.
(16) Typical procedure: Solid supported Schiff base 7 (6 mol,
0.012 equiv) was weighed in an Alltech tube and the resin
was swollen in CH2Cl2 for 1 h. A 0.04 M solution of
VO(acac)2 in CH2Cl2 (1 mL, 40 mol) was added and the
mixture was shaken for 1 h. The solution was filtered and the
resin washed with CH2Cl2 (5 2 mL) and transferred into a
reaction test tube. A 0.5 M solution of thioanisole (1 mL, 0.5
mmol, 1 equiv) and 1,2,3-trimethoxybenzene (0.1 mmol, 0.2
equiv, internal standard) in CH2Cl2 was added, followed by
7% H2O2 in H2O (240 L, 1.1 equiv). The reaction mixture
was stirred for 16 h and analysed by chiral HPLC (Chiralcel
OD-H, 5% EtOH in heptane, 1 mL/min, 227 nm). Retention
Synlett 2002, No. 7, 1055–1060 ISSN 0936-5214 © Thieme Stuttgart · New York