Chemistry Letters 2002
175
References and Notes
1
a) ‘‘Molecular Catenanes, Rotaxanes and Knots,’’ ed. by J.-P.
Sauvage and C. O. D-. Buchecker, John Wiley & Sons, New York
(1999). b) S. J. Cantrill, A. R. Pease, and J. F. Stoddart, Dalton,
2000, 3715. c) C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K.
Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart, and J. R. Heath,
Science, 289, 1172 (2000).
2
3
4
a) M. Asakawa, M. Higuchi, G. Mattersteig, T. Nakamura, A. R.
Pease, F. M. Raymo, T. Shimizu, and J. F. Stoddart, Adv. Mat., 12,
1099 (2000). b) C. D. Nadai, C. M. Whelan, C. Perollier, G.
Clarkson, D. A. Leigh, R. Caudano, and P. Rudolf, Surf. Sci., 454,
112 (2000).
a) P. J. Thomas, N. Berovic, P. Laitenberger, R. E. Palmer, N.
Bampos, and J. K. M. Sanders, Chem. Phys. Lett., 294, 229 (1998).
b) J. K. Gimzewski and C. Joachim, Science, 283, 1683 (1999). c)
M. Furukawa, H. Tanaka, K. Sugiura, Y. Sakata, and T. Kawai,
Surf. Sci., 445, L58 (2000).
Data for 5: white solid. 1H NMR (CDCl3, 600 MHz, 298 K) ꢀ 1.31
(s, 9H, C(CH3)3), 1.77 (br, CH2NHCH2), 3.77 (s, 2H, C4-CH2),
3.88 (s, 2H, C5-CH2), 7.25 (d, J ¼ 8:1 Hz, 2H, C3H), 7.35 (d,
J ¼ 8:1 Hz, 2H, C2H), 7.47 (d, J ¼ 8:1 Hz, 2H, C6H), 7.60 (d,
J ¼ 6:2 Hz, 2H, C10H), 7.82 (d, J ¼ 8:1 Hz, 2H, C7H), 8.16 (br,
CONH), 8.51 (d, J ¼ 6:2 Hz, 2H, C11H). 13C NMR (CDCl3,
600 MHz, 298 K): ꢀ ¼ 31:36 (C(CH3)3), 34.48 (C(CH3)3), 52.66,
52.87 (CH2NHCH2), 113.81 (C10), 125.39 (C2), 127.29 (C7),
127.83 (C3), 128.32 (C6), 133.62 (C8), 136.87 (C4), 145.12 (C5),
145.50 (C1), 150.10 (C9), 150.77 (C11), 166.03 (C ¼ O). MS (FAB)
found: m=z 374. Calcd for C24H27N3O: Mþ, 374. Anal. Calcd for
C
75.26;H, 7.37;N, 10.66%.
H. Tamiaki, S. Suzuki, and K. Maruyama, Bull. Chem. Soc. Jpn., 66,
2633 (1933).
24H27N3O 0.5H2O: C, 75.36;H, 7.38;N, 10.99%. Found: C,
Scheme 2. Preparation of porphyrin-stoppered rotaxane.
5
6
a) H. Ogishi, J. Setsume, T. Omura, and Z. Yoshida, J. Am. Chem.
Soc., 97, 6461 (1975). b) Data for 8: purple solid. 1H NMR (CDCl3,
600 MHz, 298 K) ꢀ1.51 (s, 36H, C(CH3)3), 7.77 (s, 4H, Py), 8.06 (s,
4H, Py), 8.15 (s, 4H, Ar), 9.00 (s, 8H, Ar). MS (FAB) found: m=z
from the porphyrin ring.6a For instance, the peak assigned to C11H
shifts towards up-field drastically (Áꢀ ¼ 8:53 À 0:75 ¼
7:78 ppm). On the other hand, the peak assigned to tert-butyl
group of 5þ, which are the most far from the porphyrin ring, shifts
slightly (Áꢀ ¼ 0:11 ppm). The peaks of DB24C8 also shift
towards up-field (Áꢀ ¼ ca. 0.22 ppm). The intensity of the
anisotropic shielding effect on DB24C8 is almost same for that on
the methylene protons of the axis (C4-CH2) (Áꢀ ¼ 0:23 ppm).
This result suggests that DB24C8 locate around the methylene
group of 5þ.
The absorption maxima of the Soret and Q bands of 8 shifted
towards longer wavelength by the formation of 9. This result is
consistent with that for the axial coordination of pyridine
derivatives to 8.
Recently, some groups reported the porphyrin-stoppered
rotaxanes.11 In these studies, the end capping reaction by the axial
coordination of porphyrin derivatives is thermodynamically
unstable. In our study, the coordination of 7 to 8 is quite stable.
No dissociated species could be observed by 1H NMR spectrum
even if it heated to 323 K.
1200. Calcd for C76H92ClN4Rh: Mþ, 1200. UV-vis (CHCl3): ꢁmax
:
425, 535, 569 nm.
7
Data for 7: 1H NMR (CDCl3, 600 MHz, 298 K) ꢀ 1.25 (s, 9H,
C(CH3)3), 3.39 (m, 8H, CH2 of 6), 3.73 (m, 8H, CH2 of 6), 4.09 (m,
8H, CH2 of 6), 4.43 (m, 2H, C4-CH2), 4.74 (m, 2H, C5-CH2), 6.75
(m, 4H, Ar of 6), 6.87 (m, 4H, Ar of 6), 7.15 (d, J ¼ 7:3 Hz, 2H,
C3H), 7.24 (d, J ¼ 7:3 Hz, 2H, C2H), 7.47 (d, J ¼ 8:1 Hz, 2H,
C6H), 7.67 (br, 2H, CH2NH2CH2), 7.89 (d, J ¼ 8:4 Hz, 2H, C10H),
8.39 (d, J ¼ 8:1 Hz, 2H, C7H), 8.53 (d, J ¼ 8:4 Hz, 2H, C11H),
10.88 (s, 1H, CONH).
8
9
a) P. R. Ashton, P. T. Glink, J. F. Stoddart, P. A. Tasker, A. J. P.
White, and D. J. Williams, Chem. Eur. J., 2, 729 (1996). b) H.
Kawasaki, N. Kihara, and T. Takata, Chem. Lett., 1999, 1015.
6 (6:4 Â 10À5 mol) was dissolved in 1.6 mL of CHCl3 solution
containing 5 (3:2 Â 10À5 mol). TFA (1:9 Â 10À4 mol) was added,
and then 8 (3:2 Â 10À5 mol) was dissolved in the solution. After
complete dissolution of 8, the product was immediately purified by
GPC (Sephadex LH20, solvent: MeOH). Moreover, the product was
purified by SiO2 column (solvent: CH2Cl2 then MeOH).
10 Data for 9: purple solid. 1H NMR (CDCl3, 600 MHz, 298 K) ꢀ 0.75
(d, J ¼ 7:7 Hz, 2H, C11H), 1.14 (s, 9H, C(CH3)3 of 5), 1.44 (m, 72H,
4 Â C(CH3)3 of 8), 3.16 (m, 8H, CH2 of 6), 3.52 (m, 8H, CH2 of 6),
3.87 (m, 8H, CH2 of 6) 4.20 (m, 2H, C4-CH2), 4.42 (m, 2H, C5-
CH2), 5.71 (d, J ¼ 7:7 Hz, 2H, C10H), 6.54 (m, 4H, Ar of 6), 6.64
(m, 4H, Ar of 6), 6.95 (d, J ¼ 8:4 Hz, 2H, C3H), 7.05 (d, J ¼ 8:4 Hz,
2H, C6H), 7.07 (d, J ¼ 8:4 Hz, 2H, C2H), 7.38 (d, J ¼ 8:4 Hz, 2H,
C7H), 7.39 (br, 2H, CH2NH2CH2), 7.67 (s, 4H, Ar of 8), 7.96 (s, 4H,
Py of 8), 8.09 (s, 4H, Py of 8), 8.85 (s, 8H, Ar of 8), 10.29 (br, 1H,
CONH). MS (FAB) found: m=z 2021. Calcd for
The preparation of the porphyrin-stoppered rotaxane mono-
layer on a substrate and the observation of the physicochemical
properties of the rotaxane as a single molecule are now in
progress.
This study was supported by Industrial Technology Research
Grant Program in ’00 from the New Energy and Industrial
Technology Development Organization (NEDO) of Japan.
C
124H151ClN7O9Rh: Mþ, 2021.
11 a) K. Chichak, M. C. Walsh, and N. R. Branda, Chem. Commun.,
2000, 847. b) M. J. Gunter, N. Bampos, K. D. Johnstone, and J. K.
M. Sanders, New J. Chem., 25, 166 (2001).
This paper is dedicated to Professor Teruaki Mukaiyama on
the occasion of his 75th birthday.