7714
R. Singh, S. K. Ghosh / Tetrahedron Letters 43 (2002) 7711–7715
Having set the three stereocentres at C-2, C-3 and C-6
correctly, all that remained for the synthesis were con-
version of the -CH2OH to carboxylic acid and silyl
function to a hydroxy group. For this, the alcohol 27
was converted to the acid 28§ in two steps involving
Swern’s oxidation to aldehyde followed by KMnO4
oxidation in nearly quantitative yield. Conversion of
the silyl group to hydroxy with retention of configura-
tion was achieved using peracetic acid and potassium
bromide to give the N-Cbz protected carpamic acid 29§
in very good yield (81%). This on hydrogenolysis pro-
vided (+)-carpamic acid (1), mp 228–230°C. Since we
started with the homochiral benzyl ester 18, and the
synthetic sequence is not expected to cause any epimeri-
sation, the enantiomeric purity of (+)-carpamic acid
should be very high (>99%). This was substantiated by
comparison of the specific rotation value ([h]2D1 +5.1, c
1.38, MeOH) of 1 with those reported19 and also from
the spectroscopic data.18
1998, 633–640; (d) Nadin, A. J. Chem. Soc., Perkin.
Trans. 1 1998, 3493–3513; (e) Laschat, S.; Dickner, T.
Synthesis 2000, 1781–1813; (f) Enders, D.; Kirchhoff, J.
H. Synthesis 2000, 2099–2105 and references cited
therein; (g) Sugiura, M.; Hagio, H.; Hirabayashi, R.;
Kobayashi, S. J. Am. Chem. Soc. 2001, 123, 12510–
12517.
4. Toyooka, N.; Yoshida, Y.; Momose, T. Tetrahedron Lett.
1995, 36, 3715–3718.
5. Koulocheri, S. D.; Haroutounian, S. A. Tetrahedron Lett.
1999, 40, 6869–6870.
6. Agami, C.; Couty, F.; Mathieu, H. Tetrahedron Lett.
1998, 39, 3505–3508.
7. Mitsunobu, O. Synthesis 1981, 1.
8. (a) Fleming, I.; Henning, R.; Parker, D. C.; Plaut, H. E.;
Sanderson, P. E. J. J. Chem. Soc., Perkin Trans. 1 1995,
317–337; (b) Jones, G.; Landias, Y. Tetrahedron 1996, 52,
7599–7662.
9. Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97,
2063–2192.
In conclusion, a highly diastereoselective synthesis of
(+)-carpamic acid has been achieved from anhydride
11. The key steps were desymmetrisation of 11 with
oxazolidinone 12, silicon directed highly stereoselective
enolate methylation, silicon facilitated Curtius reaction,
hydrogenation of 10 which took place with very high
selectivity due to the pseudoaxial positioning of the C-2
methyl substituent and a pseudoequatorial disposition
of the bulky PhMe2Si at C-3, and conversion of
PhMe2Si to OH with retention of stereochemistry. As
the half ester 15 could be made in an enantioconvergent
fashion, both the enantiomers of the natural product
could be synthesised by this route.
10. (a) Calaza, M. I.; Paleo, M. R.; Sardina, F. J. J. Am.
Chem. Soc. 2001, 123, 2095–2096; (b) Foubelo, F.;
Gutierrez, A.; Yus, M. Synthesis 1999, 503–514; (c)
Foubelo, F.; Gutierrez, A.; Yus, M. Tetrahedron Lett.
1997, 38, 4837–4840 and references cited therein.
11. Verma, R.; Ghosh, S. K. J. Chem. Soc., Perkin Trans. 1
1998, 2377–2381 and references cited therein.
12. Coke, J. L.; Rice, W. Y. J. Org. Chem. 1965, 30, 3420–
3422 and references cited therein.
13. (a) Watt, J. M.; Breyer-Brandwijk, M. G. The Medicinal
and Poisonous Plants of Southern and Eastern Africa, 2nd
ed.; E. and S. Livingston: London, 1962; (b) Hornick, C.
A.; Sanders, L. I.; Lin, Y. C. Res. Commun. Chem.
Pathol. Pharmacol. 1978, 22, 277; Chem. Abs. 1979, 90,
66761p; (c) Dalziel, J. M. The Useful Plants of West
Tropical Africa; Crown Agents: London, 1937; p. 52.
14. (a) Fahy, J.; Mamatas, S.; Bigg, D.; Kruczynski, A.; Kiss,
R. Fr. Pat. No FR 2704858, 1994, Appl. No FR 1993-
5284; CA 122:133499; (b) Fahy, J.; Mamatas, S.; Bigg,
D.; Kruczynski, A.; Kiss, R. Pat. No. WO 9421648, 1994,
Appl. No WO 94-FR268 19940314; CA 122:10343; (c)
Mulkidzhanyan, K. G.; Sulakvelidze, M. T.; Abuladze,
G. V.; Kutateladze, I. G. Akad. Nauk Gruz. 1992, 144,
441–444; (d) Hornick, C. A.; Sanders, L. I.; Lin, Y. C.
Res. Commun. Chem. Pathol. Pharmacol. 1978, 22, 277–
289.
Acknowledgements
We thank National Facility at TIFR for 500/600 MHz
NMR and NPIL, Mumbai, for providing mass spectra.
References
1. (a) Jones, T. H.; Blum, M. S. In Alkaloids: Chemical and
Biological Perspectives; Pelletier, S. W., Ed.; Wiley: New
York, 1983; Vol. 1, Chapter 2, pp. 33–84; (b) Fodor, G.
B.; Colasanti, B. In Alkaloids: Chemical and Biological
Perspectives; Pelletier, S. W., Ed.; Wiley: New York,
1985; Vol. 3, Chapter 1, pp. 1–90; (c) Strunz, G. M.;
Findlay, J. A. In The Alkaloids; Brossi, A., Ed.; Aca-
demic Press: San Diego, 1986; Vol. 26, pp. 89–183; (d)
Schneider, M. J. In Alkaloids: Chemical and Biological
Perspectives; Pelletier, S. W., Ed.; Wiley: New York,
1996; Vol. 10, Chapter 3, pp. 155–355; (e) Cook, G. R.;
Beholz, L. G.; Stille, J. R. J. Org. Chem. 1994, 59,
3575–3584.
15. Brown, E.; Bourgouin, A. Tetrahedron 1975, 31, 1047–
1051.
16. Natsume, M.; Ogawa, M. Heterocycles 1980, 14, 169–173
and 615–618.
17. Holmes, A. B.; Swithenbank, C.; Williams, S. F. J. Chem.
Soc., Chem. Commun. 1986, 265–266.
18. Hasseberg, H. A.; Gerlach, H. Liebigs Ann. Chem. 1989,
255–261.
19. Hanessian, S.; Frenette, R. Tetrahedron Lett. 1979, 20,
3391–3394.
20. (a) Narasimhan, N. S. Chem. Ind. (London) 1956, 1526–
1527; (b) Corey, E. J.; Nicolaou, K. C.; Melvin, L. S. J.
Am. Chem. Soc. 1975, 97, 654–655.
21. (a) Verma, R.; Ghosh, S. K. J. Chem. Soc., Perkin Trans.
1 1999, 265–270; (b) Verma, R.; Ghosh, S. K. Chem.
Commun. 1997, 1601–1602.
2. Fodor, G.; Fumeaux, J.-P.; Sankaran, V. Synthesis 1972,
464–472.
3. (a) Brown, E.; Dhal, R.; Casals, P. F. Tetrahedron 1972,
28, 5607–5613; (b) Baliah, V.; Jeyaraman, R.; Chan-
drasekaran, L. Chem. Rev. 1983, 83, 379–423; (c) Bailey,
P. D.; Millwood, P. A.; Smith, P. D. Chem. Commun.