10.1002/anie.202005612
Angewandte Chemie International Edition
COMMUNICATION
[4]
[5]
[6]
A. Gautier, C. Gauron, M. Volovitch, D. Bensimon, L. Jullien, S. Vriz, Nat.
Chem. Biol. 2014, 10, 533-541.
prodrug group dropped to ~30%, which are lower than pre-
activated prodrug group but slightly higher than free MMAE group,
indicating that radiation-induced cleavage chemistry is efficient in
vitro though not complete, which also coordinates our next finding.
According to our previous study, the local concentration of
prodrug in tumor which is delivered by antibody-drug conjugate is
about 200 nM[1c]. The prodrug molecule (200 nM) was dissolved
in PBS and irradiated with γ-rays of 1 Gy/min for a series of
periods. The concentration of released free MMAE was
determined by LC-MS, and it increased linearly with the radiation
dose, and found that >25% of MMAE (>50 nM) would be released
at the dose of 4 Gy (Figure 5D). Considering the fact that IC50 of
MMAE to many cancer cell lines is ~1 nM, the clinical application
of radiation-responsive ADC would be promising.
M. M. Lerch, M. J. Hansen, G. M. van Dam, W. Szymanski, B. L. Feringa,
Angew. Chem. Int. Ed. 2016, 55, 10978-10999.
B. K. Agrawalla, Y. Chandran, W.-H. Phue, S.-C. Lee, Y.-M. Jeong, S. Y.
D. Wan, N.-Y. Kang, Y.-T. Chang, J. Am. Chem. Soc. 2015, 137, 5355-
5362.
[7]
J. Peng, A. Samanta, X. Zeng, S. Han, L. Wang, D. Su, D. T. B. Loong,
N.-Y. Kang, S.-J. Park, A. H. All, W. Jiang, L. Yuan, X. Liu, Y.-T. Chang,
Angew. Chem. Int. Ed. 2017, 56, 4165-4169.
[8]
[9]
G. Lan, K. Ni, R. Xu, K. Lu, Z. Lin, C. Chan, W. Lin, Angew. Chem. 2017,
129, 12270-12274.
a) W. Fan, B. Yung, P. Huang, X. Chen, Chem. Rev. 2017, 117, 13566-
13638; b) K. Ni, G. Lan, S. S. Veroneau, X. Duan, Y. Song, W. Lin, Nat.
Commun. 2018, 9, 4321; c) W. P. Levin, H. Kooy, J. S. Loeffler, T. F.
DeLaney, Br. J. Cancer 2005, 93, 849-854.
Here we presented a strategy in which γ-rays and X-rays can
initiate the hydrolysis of water that produces •OH to release
fluorescent molecules and prodrugs. This strategy may also work
with other emerging radiotherapy methods, including peptide-
radionuclide radiotherapy and proton therapy, which could
produce high levels of hydroxyl radicals in tumors. Moreover,
compared with other activation methods[24], radiotherapy for
prodrug activation could have the following merits: 1) high spatial
and temporal resolution; 2) high tissue-penetration; and 3) high
clinical relevance. This combination of chemotherapy and precise
radiotherapy is likely to bring about a crucial breakthrough in
cancer treatment.
[10] R. Baskar, K. A. Lee, R. Yeo, K.-W. Yeoh, Int. J. Med. Sci. 2012, 9, 193.
[11] J.-F. Bosset, L. Collette, G. Calais, L. Mineur, P. Maingon, L. Radosevic-
Jelic, A. Daban, E. Bardet, A. Beny, J.-C. Ollier, New Engl. J. Med. 2006,
355, 1114-1123.
[12] X. Wang, X. Wang, S. Jin, N. Muhammad, Z. Guo, Chem. Rev. 2019,
119, 1138-1192.
[13] N. Kotagiri, G. P. Sudlow, W. J. Akers, S. Achilefu, Nat. Nanotechnol.
2015, 10, 370.
[14] R. K. Gill, G. S. Mitchell, S. R. Cherry, Phys. Med. Biol. 2015, 60, 4263.
[15] C. Ran, Z. Zhang, J. Hooker, A. Moore, Mol. Imag. Biol. 2012, 14, 156-
162.
[16] D. Duan, H. Liu, Y. Xu, Y. Han, M. Xu, Z. Zhang, Z. Liu, ACS Appl. Mater.
Interfaces 2018, 10, 5278-5286.
[17] P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V.
Popik, A. Kostikov, J. Wirz, Chem. Rev. 2013, 113, 119-191.
[18] G. Albarran, E. Mendoza, R. H. Schuler, Radiat. Phys. Chem. 2016, 124,
46-51.
Acknowledgements
[19] X. Bai, Y. Huang, M. Lu, D. Yang, Angew. Chem. 2017, 129, 13053-
13057.
This work was funded by the National Natural Science Foundation
of China (no. NSFC U1867209 and no. NSFC 21778003) and the
Ministry of Science and Technology of the People’s Republic of
China (2017YFA0506300).
[20] a) H. Li, X. Li, W. Shi, Y. Xu, H. Ma, Angew. Chem. 2018, 130, 13012-
13016; b) H. Li, W. Shi, X. Li, Y. Hu, Y. Fang, H. Ma, J. Am. Chem. Soc.
2019, 141, 18301-18307.
[21] J. C. Er, C. Leong, C. L. Teoh, Q. Yuan, P. Merchant, M. Dunn, D. Sulzer,
D. Sames, A. Bhinge, D. Kim, S.-M. Kim, M.-H. Yoon, L. W. Stanton, S.
H. Je, S.-W. Yun, Y.-T. Chang, Angew. Chem. Int. Ed. 2015, 54, 2442-
2446.
Keywords: radiation-cleavable chemistry • hydroxyl radical •
fluorescent probe • prodrug activation • controlled release
[22] S. Ye, J. J. Hu, D. Yang, Angew. Chem. Int. Ed. 2018, 57, 10173-10177.
[23] R. Zhang, J. Zhao, G. Han, Z. Liu, C. Liu, C. Zhang, B. Liu, C. Jiang, R.
Liu, T. Zhao, M.-Y. Han, Z. Zhang, J. Am. Chem. Soc. 2016, 138, 3769-
3778.
[1]
a) Y. Nihongaki, F. Kawano, T. Nakajima, M. Sato, Nat. Biotechnol. 2015,
33, 755-760; b) S. T. Laughlin, J. M. Baskin, S. L. Amacher, C. R.
Bertozzi, Science 2008, 320, 664-667; c) Q. Wang, Y. Wang, J. Ding, C.
Wang, X. Zhou, W. Gao, H. Huang, F. Shao, Z. Liu, Nature 2020, 579,
421-426.
[24] a) X. Ji, Z. Pan, B. Yu, L. K. De La Cruz, Y. Zheng, B. Ke, B. Wang,
Chem. Soc. Rev. 2019, 48, 1077-1094; b) Y. Zheng, X. Ji, B. Yu, K. Ji,
D. Gallo, E. Csizmadia, M. Zhu, M. R. Choudhury, L. K. C. De La Cruz,
V. Chittavong, Z. Pan, Z. Yuan, L. E. Otterbein, B. Wang, Nat. Chem.
2018, 10, 787-794.
[2]
[3]
M. Gomelsky, Sci. Transl. Med. 2017, 9, eaan3936.
J. Wang, Y. Liu, Y. Liu, S. Zheng, X. Wang, J. Zhao, F. Yang, G. Zhang,
C. Wang, P. R. Chen, Nature 2019, 569, 509-513.
This article is protected by copyright. All rights reserved.