Scheme 2 Reagents and conditions: (a) (2)-Ipc2B(E-crotyl), THF, Et2O,
278 °C; NaOH, H2O2, 55%; (b) t-BuLi, THF, 278 °C; BnBr, HMPA, 86%;
(c) O3, CH2Cl2, 278 °C; PPh3, 74%; (d) Ph3PCHCO2Bn, CH2Cl2, 63%; (e)
H2, Pd/C, EtOAc, 87%; (f) DIBAL-H, PhCH3, 278 °C; (g) Ac2O, pyr, 87%
for two steps; (h) Allyl-TMS, BF3OEt2, CH2Cl2, 278 °C, 80%; (i) O3,
CH2Cl2, 278 °C; PPh3, 86%; (j) 4-methylpentyne, Cp2Zr(H)Cl, CH2Cl2;
Me2Zn, PhCH3, 12 (25 mol%), 230 °C, 62%; (k) TIPSCl, im, DMAP,
DMF, 76%; (l) EtOH, PPTS, 82%; (m) PPh3, I2, im, 87%.
Scheme 3 Reagents and conditions: (a) t-BuLi, THF/HMPA; 14, 74%; (b)
PhI(O2CCF3)2, THF/MeOH/H2O, 61%; (c) L-Selectride, THF, 278 °C,
98%; (d) MeOTf, 2-Me-4,6-(t-Bu)2pyr., CH2Cl2, 93%; (e) EtOH, TsOH,
71%; (f) Dess-Martin periodinane, CH2Cl2; (g) NaClO2, 2-methyl-
2-butene, t-BuOH, THF, H2O, 94% for two steps; (h) 1 M HCl, THF, 78%;
(i) PPh3, DIAD, THF, 0 °C, 58%; (j) TBAF, THF, 78%.
allylic alcohol 13 in 62% yield with a 5.1+1 diastereoselectivity.
This ratio was initially assumed to be in favor of the desired C17
(R)-alcohol, i.e. the configuration which the chirality of the
ligand and 1,3-chelate control by the substrate should both
enforce. However, elaboration of the major diastereomer into an
epimeric macrocycle proved that the vinylzinc addition actually
favored the opposite C17 (S)-diastereomer. Accordingly, we
changed our strategy to using a Mitsunobu macrolactonization16
to rectify the C17 stereochemistry. Silylation of the secondary
alcohol of the major diastereomer with TIPSCl followed by
selective TBS deprotection under mildly acidic conditions and
finally iodide formation provided the C10–C17 fragment 14.
Lithiation of dithiane 7 using the conditions developed by
Williams17 and addition of iodide 14 gave the C1–C17
intermediate in 74% yield (Scheme 3). Dithiane deprotection18
provided ketone 15. Excellent diastereoselectivity was obtained
in the reduction of this ketone with L-Selectride (98% yield, dr
= 13.6+1). Methylation of the sterically hindered C9-alcohol
with methyl triflate and deprotection of the primary TIPS-ether
provided alcohol 16. Two step oxidation to the carboxylic acid
using Dess-Martin periodinane followed by NaClO2 proceeded
in 94%. Removal of the secondary TIPS-ether with aqueous
HCl in THF gave the C17-epi seco acid in 78% yield.
Gratifyingly, application of a slight modification of the
conditions developed by Simon and coworkers19 for Mitsunobu
macrolactonization [syringe pump addition of the hydroxy acid
to premixed PPh3 (25 eq.) and DIAD (20 eq.) in THF at 0 °C]
furnished the desired TBDPS-protected macrocycle in 58%
yield. No products of allylic inversion or retention of configura-
tion were detected in this reaction. Finally, desilylation with
TBAF in THF provided the leucascandrolide A macrocycle 17,
which was identical in all respects with spectral data and
specific rotations reported by Leighton,2 Rychnovsky,3 and
Pietra.1
The National Science Foundation (CHE-0078944) and
Merck Research Laboratories are gratefully acknowledged for
financial support.
Notes and references
1 M. D. D’Ambrosio, A. Guerriero, C. Debitus and F. Pietra, Helv. Chim.
Acta, 1996, 79, 51.
2 K. R. Hornberger, C. L. Hamblett and J. L. Leighton, J. Am. Chem. Soc.,
2000, 122, 12894.
3 D. J. Kopecky and S. D. Rychnovsky, J. Am. Chem. Soc., 2001, 123,
8420.
4 M. T. Crimmins, C. A. Carroll and B. W. King, Org. Lett., 2000, 2, 597;
P. Wipf and T. H. Graham, J. Org. Chem., 2001, 66, 3242; A.
Vakalopoulos and H. M. R. Hoffmann, Org. Lett., 2001, 3, 177; S. A.
Kozmin, Org. Lett., 2001, 3, 755; T. J. Hunter and G. A. O’ Doherty,
Org. Lett., 2001, 3, 1049.
5 J. B. Baudin, G. Hareau, S. A. Julia, R. Lorne and O. Ruel, Bull. Soc.
Chim. Fr., 1993, 130, 856.
6 D. A. Evans and G. C. Andrews, Acc. Chem. Res., 1974, 7, 147.
7 P. G. McDougal, J. G. Rico, Y.-I. Oh and B. D. Condon, J. Org. Chem.,
1986, 51, 3388.
8 Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H. Masamune and K.
B. Sharpless, J. Am. Chem. Soc., 1987, 109, 5765.
9 D. A. Evans, J. A. Gauchet-Prunet, E. M. Carreira and A. B. Charette,
J. Org. Chem., 1991, 56, 741; P. Wipf and S. Lim, J. Am. Chem. Soc.,
1995, 117, 558; P. Wipf and S. Lim, Chimia,, 1996, 50, 157.
10 N. Kanoh, J. Ishihara, Y. Yamamoto and A. Murai, Synthesis, 2000, 13,
1878.
11 P. J. Parsons, P. Lacrouts and A. D. Buss, J. Chem. Soc., Chem.
Commun., 1995, 4, 437.
12 H. C. Brown and K. S. Bhat, J. Am. Chem. Soc., 1986, 108, 5919.
13 J. A. Marshall and D. G. Cleary, J. Org. Chem., 1986, 51, 858.
14 J. A. C. Romero, S. A. Tabacco and K. A. Woerpel, J. Am. Chem. Soc.,
2000, 122, 168.
15 P. Wipf and S. Ribe, J. Org. Chem., 1998, 63, 6454; P. Wipf and C.
Kendall, Chem. Eur. J., 2002, 8, 1778.
16 O. Mitsunobu, Synthesis, 1981, 1, 1.
17 D. R. Williams and S.-Y. Sit, J. Am. Chem. Soc., 1984, 106, 2949.
18 G. Stork and K. Zhao, Tetrahedron Lett., 1989, 30, 287.
19 K. W. Li, J. Wu, W. Xing and J. A. Simon, J. Am. Chem. Soc., 1996,
118, 7237.
In conclusion, highlights of our formal total synthesis include
the bidirectional synthesis of segment 4 and its elaboration into
pyran 7 by arene reduction–diene ozonolysis. Furthermore,
efficient thioacetal alkylation and Mitsunobu macrocyclization
via inversion were used for segment coupling and lactonization.
Work is in progress to elucidate the fundamental mechanism
responsible for the unexpected doubly mismatched ster-
eochemical outcome in the formation of the secondary allylic
alcohol stereocenter at C17.
CHEM. COMMUN., 2002, 2066–2067
2067