M. Be´res et al. / Tetrahedron Letters 43 (2002) 6035–6038
6037
Claeys, M.; Vlietinck, A. Tetrahedron Lett. 1996, 37,
1703–1707.
2. Tima´ri, G.; Soo´s, T.; Hajo´s, G. Synlett. 1997, 1067–1768.
3. (a) Fresneda, P. M.; Molina, P.; Delgado, S. Tetrahedron
2001, 57, 6197–6202; (b) Molina, P.; Fresneda, P. M.;
Delgado, S. Synthesis 1999, 326–329.
4. Cimanga, K.; De Bruyne, T.; Lasure, A.; Van Poel, P.;
Pieters, L.; Claeys, M.; Vanden Berghe, D.; Kambu, K.;
Tona, L.; Vlietinck, A. J. Planta Med. 1996, 62, 22–28.
5. Noamesi, B. K.; Bamgbose, S. O. A. Planta Med. 1983,
47, 100–105.
Figure 2.
6. Cimanga, K.; De Bruyne, T.; Pieters, L.; Claeys, M.;
Vlietinck, A. J. Nat. Prod. 1997, 60, 688–692.
a]pyridinium 16 ring system (debenzologue of 12). It
was hoped that the generation of the aryloxenium ion
from this salt would lead to intramolecular substitution
of the pyridine ring.
7. (a) Julio, M.; Stevens, M. F. G. J. Chem. Soc., Perkin
Trans. 1 1998, 1677 and references cited therein; (b)
Deady, L. W.; Kaye, A. J.; Finlay, G. J.; Baguley, B. C.;
Denny, W. A. J. Med. Chem. 1997, 40, 2040–2051 and
references cited therein; (c) Takeuchi, Y.; Oda, T.; Chang,
M.; Okamota, Y.; Ono, J.; Oda, Y.; Harada, K.; Hashi-
gaki, K.; Yamato, M. Chem. Pharm. Bull. 1997, 45,
406–410.
8. Tima´ri, G.; Soo´s, T.; Hajo´s, G.; Messmer, A.; Nacsa, J.;
Molnar, J. Bioorg. Med. Chem. Lett. 1996, 6, 2831–2835.
9. (a) Csa´nyi, D.; Tima´ri, G.; Hajo´s, G. Synth. Commun.
1999, 29, 3959–3969; (b) Csa´nyi, D.; Hajo´s, G.; Riedl, Z.;
Tima´ri, G.; Bajor, Z.; Cochard, F.; Sapi, J.; Laronze,
J-Y. Bioorg. Med. Chem. Lett. 2000, 10, 1767–1769; (c)
Trecourt, F.; Mongin, F.; Mallet, M.; Queguiner, G.
Synth. Commun. 1995, 25, 4011–4017.
Thermolysis of 16a failed to yield benzofuro[3,2-
b]pyridine 17a. It was reasoned that this could be due
to the proposed oxenium ion intermediate not being
electrophilic enough to attack a pyridine b-position.
Introduction of a nitro group para to the oxygen atom
should remedy this problem. Indeed, thermolysis of 16b
gave 17b in 20% yield (Fig. 2). The fact that oxenium
ions are isoelectronic with nitrenes adds another dimen-
sion to the interest in these species. Because of the high
reactivity at C-4 of the isoquinoline ring towards elec-
trophiles,14 an increase in the amount of ring transfor-
mation product 14 compared to 17 would be expected
without activation of aryloxenium ion by the nitro
group. Indeed, when linearly fused isoxazolium salt 12
was heated in o-dichlorobenzene facile ring transforma-
tion took place to give the expected benzofuro[3,2-
10. (a) Govindachari, T. R.; Sudarsanam, V. Indian J. Chem.
1967, 5, 16; (b) Martin, M. J.; Trudell, M. L.; Diaz
Arauzo, H.; Allen, M. S.; LaLoggia, A. J.; Deng, L. J.
Med. Chem. 1992, 35, 4105–4117.
c]isoquinoline15 14 together with
a little of the
11. Abramovitch, R. A.; Inbasekaran, M. N. J. Chem. Soc.,
para-fluorophenol derivative 15, the formation of which
can be interpreted by a nucleophilic attack of fluoride
at the para position of the phenyloxenium cation 13
similar to the Schiemann reaction.16 This consideration
was supported by replacing the BF−4 anion of 12 with
HSO−4; in this case the formation of phenol derivative
15 was not detected.
Chem. Commun. 1978, 149–150.
12. Szabo´, A.; Hermecz, I. J. Org. Chem. 2001, 66, 7219–
7223.
13. (a) Abramovitch, R. A.; Alvernhe, G.; Bartnik, R.; Das-
sanayake, N. L.; Inbasekaran, M. N.; Kato, S. J. Am.
Chem. Soc. 1981, 103, 4558–4565; (b) Abramovitch, R.
A.; Inbasekaran, M. N.; Kato, S.; Radzikowska, T. A.;
Tomasik, P. J. Org. Chem. 1983, 48, 690–694.
14. Be´res, M.; Hajo´s, G.; Riedl, Z.; Soo´s, T.; Tima´ri, G.;
Messmer, A. J. Org. Chem. 1999, 64, 5499–5503.
15. Selected data for compounds in Scheme 1: (a) Data for 9:
In summary, we have elaborated a concise synthesis of
two closely related isomers (3 and 14) of natural cryp-
tosanguinolentine 2b. This route seems to provide a
general method for the preparation of various substi-
tuted derivatives of c-fused indolo- and benzofuro-iso-
quinolines using appropriately substituted isoquinolines
and substituted N-pivaloylamino arylboronic acids and
opens the way for their biological evaluation.
1
BF−4 salt, H NMR (CD3CN) l 9.05 (1H, s), 8.61 (1H, d,
J=8 Hz), 8.4 (1H, s), 8.38 (1H, m), 8.12–7.94 (4H, m),
7.84–7.26 (2H, m). IR (KBr) w=3102, 2284, 1561, 1310,
1060, 770 cm−1; (b) Data for 10: 1H NMR (CDCl3) l 8.86
(1H, s), 7.79 (1H, d, J=8 Hz), 7.74 (1H, d, J=8 Hz),
7.70 (1H, s), 7.62–7.58 (2H, m), 7.53 (1H, m), 7.45 (1H,
d, J=7.5 Hz), 7.30 (1H, d, J=7.5 Hz), 7.27 (1H, m). IR
(KBr) w=2086, 1435, 1315, 1285, 1127, 760 cm−1; (c)
Data for 3: 1H NMR (DMSO-d6) l 12.3 (1H, s), 9.12
(1H, s), 8.51 (1H, d, J=7.7 Hz), 8.29 (1H, d, J=8 Hz),
8.24 (1H, d, J=8Hz), 7.91 (1H, m), 7.70 (1H, m), 7.69
(1H, d, J=7.6 Hz), 7.49 (1H, m), 7.31 (1H, m), 13C
(DMSO-d6) l 144.5, 138.4, 133.4, 129.8, 128.4, 127.2,
126.4, 126.1, 125.4, 123.4, 122.6, 121.1, 119.7, 119.1,
Acknowledgements
Fund OTKA 26476 is gratefully appreciated.
References
1
111.7 ppm; (d) Data for 12: H NMR (CD3CN) l 10.31
1. (a) Sharaf, M. H. M.; Schiff, P. L.; Tackie, A. N.;
Phoebe, C. H.; Martin, G. E. J. Heterocycl. Chem. 1996,
33, 239–243; (b) Cimanga, K.; De Bruyne, T.; Pieters, L.;
(1H, s), 9.22 (1H, s), 8.52 (1H, d, J=8 Hz), 8.45–8.44
(2H, m), 8.23 (1H, m), 8.10 (1H, m), 8.01 (1H, m), 7.90
(1H, d, J=8.0 Hz), 7.79 (1H, m). 13C (CD3CN) l 156.2,