˘
C. Dobrota et al. / Tetrahedron Letters 50 (2009) 1886–1888
1888
12. Faidallah, H. M.; Sharshira, E. M.; Basaif, S. A.; A-Ba-Oum, A. E.-K. Phosphorus,
Sulfur Silicon Relat. Elem. 2002, 177, 67–79.
13. (a) Yang, R.-Y.; Dai, L.-X. J. Org. Chem. 1993, 58, 3381–3383; (b) Rao, V. S.;
Sekhar, K. Synth. Commun. 2004, 34, 2153–2157.
14. (a) Shang, Z. Synth. Commun. 2006, 36, 2927–2937; (b) Shang, Z.; Reiner, J.;
Chang, J.; Zhao, K. Tetrahedron Lett. 2005, 46, 2701–2704.
15. (a) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277–7287; (b) Dess, D.
B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155–4156.
16. Bose, D. S.; Idrees, M. J. Org. Chem. 2006, 71, 8261–8263.
zo[b]thien-2-yl (BBT) group by the dehydration of corresponding
diacylhydrazines.19 In the course of this study, we have encoun-
tered difficulties in obtaining several BBT-containing 1,3,4-oxadi-
azoles (i.e., some nitro-phenyl or pyridyl derivatives) via the
dehydrative cyclization. Therefore, we decided to attempt the
preparation of some BBT-containing 1,3,4-oxadiazoles using the
oxidative cyclization promoted by 1 (Table 2, entries 21–25).
To our satisfaction, we observed that most of the substrates
tested reacted smoothly in dichloromethane and gave the de-
sired oxadiazoles in good yields. Again, the use of DMF as sol-
vent was required in order to prepare the nitro derivative 3v
in moderate yield.
17. Janza, B.; Studer, A. J. Org. Chem. 2005, 70, 6991–6993.
18. Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Barluenga, S.; Hunt, K. W.; Kranich, R.;
Vega, J. A. J. Am. Chem. Soc. 2002, 124, 2233–2244. and the references cited
therein.
19. Paraschivescu, C. C.; Dumitrascu, F.; Draghici, C.; Ruta, L. L.; Matache, M.; Baciu,
I.; Dobrota, C. Arkivoc 2008, xiii, 198–206.
20. Compound 3g: mp 121–122 °C; rF 0.3 (CH2Cl2); IR (KBr, cmꢀ1) 1596, 1551, 1488,
1448, 1266, 860, 723, 688; 1H NMR (400 MHz, CDCl3) 8.12–8.1 (m, 3H), 7.73
(dd, 1H, J = 5.2 Hz, J = 1.2 Hz), 7.55–7.50 (m, 3H), 7.47 (dd, 1H, J = 5.2 Hz,
J = 3.2 Hz); 13C NMR (100 MHz, CDCl3) 163.94, 161.3, 131.65, 129.03 (2C),
127.41, 127.39, 126.88 (2C), 126.04, 125.27, 123.83; MS (CI,%) calcd 228.04,
found 229 (100, MH)+; Anal. Calcd for C12H8N2OS: C, 63.14; H, 3.53; N, 12.27.
Found: C, 63.19; H, 3.60; N, 12.33. Compound 3q: mp 124–126 °C; rF 0.3
In summary, we have demonstrated that the preparation of
unsymmetrical 2,5-disubstituted 1,3,4-oxadiazoles via the oxida-
tive cyclization of N-acyl-N0-aryliden-hydrazines may be effec-
tively accomplished utilizing the DMP, and this method stands as
a
feasible alternative for convenient access to this class of
)
(AcOEt/pentanes 3:7); IR (KBr, cmꢀ1 1603, 1507, 1283, 1250; 1H NMR
heterocycles.
(400 MHz, CDCl3) 7.65 (d, 1H, J = 2 Hz), 7.60 (dd, 2H, J = 8 Hz, J = 2 Hz), 7.45–
7.35 (m, 3H), 7.33–7.29 (m, 1H), 7.19 (d, 1H, J = 4 Hz), 6.98 (d, 1H, J = 8.4 Hz),
6.60 (dd, 1H, J = 4 Hz, J = 2 Hz), 5.22 (s, 2H), 3.98 (s, 3H); 13C NMR (100 MHz,
CDCl3) 164.04, 157.24, 151.39, 150.06, 145.64, 139.69, 136.38, 128.77 (2C),
128.22, 127.35 (2C), 120.48, 116.55, 113.89, 113.56, 112.24, 110.11, 71.02,
56.34; MS (CI,%) calcd 348.1, found 348 (98, M+), 257(100); Anal. Calcd for
C20H16N2O4: C, 68.96; H, 4.63; N, 8.04. Found: C, 69.00; H, 4.61; N, 8.07.
Compound 3t: mp 165–167 °C; rF 0.6 (CH2Cl2); IR (KBr, cmꢀ1) 1613, 1588, 1499,
1260; 1H NMR (400 MHz, CDCl3) 8.10 (d, 2H, J = 8.8 Hz), 7.97–7.94 (m, 1H),
7.86–7.84 (m, 1H), 7.53–7.51 (m, 2H), 7.03 (d, 2H, J = 8.8 Hz), 3.89 (s, 3H); 13C
NMR (100 MHz, CDCl3) 164.85, 162.71, 159.26, 138.13, 136.96, 129.08 (2C),
127.76, 125.79, 123.57, 123.3, 122.8, 119.25, 116.04, 114.69 (2C), 55.58; MS(CI,
%) calcd 342.02, found 343.5 (38, (37Cl)M+), 341.5(100, (35Cl)M+), 250.7(61),
194.7(35), 135(66); Anal. Calcd for C17H11ClN2O2S: C, 59.56; H, 3.23; N, 8.17.
Found: C, 59.51; H, 3.28; N, 8.19. Compound 3u: mp 167–169 °C; rF 0.45
Acknowledgments
The authors thank the Romanian Ministry for Education and Re-
search for financial support by a Grant CEEX-VIASAN 43/2005. We
also thank Mrs. Ulrike Ammari (Mikroanalytisches Labor, LSAC,
Technische Universität München) for performing the elemental
analyses.
References and notes
1. (a) Weaver, G. W.. In Science of Synthesis; Storr, R. C., Gilchrist, T. L., Eds.;
Thieme: Stuttgart, 2004; Vol. 13, pp 219–251; (b) Hill, J.. In Comprehensive
Heterocyclic Chemistry II; Storr, R. C., Ed.; Pergamon: Oxford, 1996; Vol. 4,. pp
267–287 and 905–1006.
2. Swain, C. J.; Baker, R.; Kneen, C.; Moseley, J.; Saunders, J.; Seward, E. M.;
Stevenson, G.; Beer, M.; Stanton, J.; Watling, K. J. Med. Chem. 1991, 34, 140–151.
3. (a) Orlek, B. S.; Blaney, F. E.; Brown, F.; Clark, M. S. G.; Hadley, M. S.; Hatcher, J.;
Riley, G. J.; Rosenberg, H. E.; Wadsworth, H. J.; Wyman, P. J. Med. Chem. 1991,
34, 2726–2735; (b) Saunders, J.; Cassidy, M.; Freedman, S. B.; Harley, E. A.;
Iversen, L. L.; Kneen, C.; MacLeod, A. M.; Merchant, K. J.; Snow, R. J.; Baker, R. J.
Med. Chem. 1990, 33, 1128–1138.
4. Tully, W. R.; Gardner, C. R.; Gillespie, R. J.; Westwood, R. J. Med. Chem. 1991, 34,
2060–2067.
5. Khan, M. T. H.; Choudhary, M. I.; Khan, K. M.; Rani, M.; Ahman, A.-u. Bioorg.
Med. Chem. 2005, 13, 3385–3395.
6. Dabiri, M.; Salehi, P.; Baghbanzadeh, M.; Bahramnejad, M. Tetrahedron Lett.
2006, 47, 6983–6986.
)
(CH2Cl2/MeOH 98:2); IR (KBr, cmꢀ1 1605, 1582, 1509, 1277; 1H NMR
(400 MHz, CDCl3) 7.98–7.96 (m, 1H), 7.88–7.85 (m, 1H), 7.71 (s, 1H), 7.67 (d,
1H, J = 8.4 Hz), 7.54–7.52 (m, 2H), 7.47–7.43 (m, 2H), 7.39 (t, 2H, J = 7.2 Hz),
7.32 (t, 1H, J = 7.2 Hz), 7.01 (d, 1H, J = 8.4 Hz), 5.25 (s, 2H), 4.01 (s, 3H); 13C NMR
(100 MHz, CDCl3) 164.88, 159.37, 151.58, 150.09, 138.17, 136.69, 136.37,
128.79, 128.23, 127.8, 127.33, 125.82, 123.64, 123.32, 122.82, 120.76, 119.19,
116.44, 113.62, 110.22, 71.03, 56.36; MS(CI,%) calcd 448.06, found 449.6 (2,
(
37Cl)M+), 447.6(5, (35Cl)M+), 343.8 (19), 295.9 (30), 257.9 (21), 241.9 (97),
211.8 (100), 196.9 (26), 194.9(76); Anal. Calcd for C24H17ClN2O3S: C, 64.21; H,
3.82; N, 6.24. Found: C, 64.19; H, 3.87; N, 6.27. Compound 3v: mp 205–207 °C;
rF 0.7 (CH2Cl2); IR (KBr, cmꢀ1) 1582, 1533, 1353, 1286, 1044, 753, 725; 1H NMR
(400 MHz, DMSO-d6) 8.25–8.23 (m, 1H), 8.2–8.18 (m, 1H), 8.01–7.97 (m, 3H),
7.9–7.83 (m, 1H), 7.69–7.64 (m, 2H); 13C NMR (100 MHz, DMSO-d6) 160.78,
159.8, 148.0, 137.54, 135.92, 133.78 (2C), 131.41, 128.5, 126.51, 124.86,
123.68, 123.33, 122.9, 118.19, 116.38; MS(CI,%) calcd 357.00, found 358.6 (22,
(
37Cl)M+), 356.7(64, 35Cl)M+), 194.9(100), 167 (26); Anal. Calcd for
(
C16H8ClN3O3S: C, 53.71; H, 2.25; N, 11.74. Found: C, 53.78; H, 2.22; N, 11.80.
Compound 3w: mp 122–124 °C; rF 0.5 (CH2Cl2); IR (KBr, cmꢀ1) 1583, 1486,
1308, 1266, 1246, 854, 758, 725; 1H NMR (400 MHz, CDCl3) 8.18 (dd, 1H,
J = 2.9 Hz, J = 1.2 Hz), 7.99–7.96 (m, 1H), 7.89–7.86 (m, 1H), 7.77 (dd, 1H,
J = 5 Hz, J = 1.2 Hz), 7.55–7.53 (m, 2H), 7.50 (dd, 1H, J = 5 Hz, J = 2.9 Hz); 13C
NMR (100 MHz, CDCl3) 161.56, 159.14, 138.21, 136.95, 128.31, 127.88, 127.65,
126.26, 125.86, 124.92, 123.38, 122.83, 118.97; MS(CI,%) calcd 317.9, found
320.7 (42, (37Cl)MH+), 318.7(100, (35Cl)MH+); Anal. Calcd for C14H7ClN2OS2: C,
52.74; H, 2.21; N, 8.79. Found: C, 52.70; H, 2.26; N, 8.83.
7. Jedlovska, E.; Lesko, J. Synth. Commun. 1994, 24, 1879–1885.
8. (a) Milcent, R.; Barbier, G. J. Heterocycl. Chem. 1983, 20, 77–80; (b) Saikahi, H.;
Shimojo, N.; Uehara, Y. Chem. Pharm. Bull. 1972, 20, 1663–1668.
9. Rostamizadeh, S.; Ghasem Housaini, S. A. Tetrahedron Lett. 2004, 34, 8753–
8756. and the references cited therein.
10. Mruthyunjayaswamy, B. H. M.; Shanthaveerappa, B. K. Indian J. Heterocycl.
Chem. 1998, 8, 31–38.
11. Werber, G.; Bucherri, F.; Noto, R.; Gentile, M. J. Heterocycl. Chem. 1977, 14,
1385–1388.