C O M M U N I C A T I O N S
(9) Ja¨kle, F.; Manners, I. Organometallics 1999, 18, 2628-2632.
(10) Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Dadighi, J. P.;
Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 4369-4378.
(11) Nobel, D.; van Koten, G.; Spek, A. L. Angew. Chem., Int. Ed. Engl. 1989,
28, 208-210.
The 2,4,6-triisopropylphenyl derivatives have the lowest potentials,
especially, that of 1 was comparable to ferrocene. The dichlo-
romethane solution of the phosphine 1 and arsine 2 can be oxidized
by silver perchlorate and afforded a purple (λmax ) 528 and 516
nm for 1+• and 2+•, respectively) solution of the corresponding
cation radical, which were also characterized by the EPR param-
eters19 similar to those of the trimesityl derivatives.3,5 A similar
reaction of trimesitylphosphine was reported to lead to the metal
complex formation.20 Although 1 and 2 were inert to hydrogen
peroxide or elemental sulfur, 1+• and 2+• reacted slowly with oxygen
to result in incorporation of oxygen. Interestingly, not only 1 and
2, but also stibine 3 displayed a reversible redox wave with the
ratio of anodic and cathodic peaks as unity at the 30 mVs-1 scanning
rate at 293 K, which suggests considerable stability of the
corresponding cation radical.21 A detailed study of the cation
radicals and application of these structures to the multistep redox
systems is in progress.
(12) 1: colorless prisms, mp 165-166 °C; 1H NMR (200 MHz, CDCl3, 293
K) δ 6.88 (6H, d, J ) 3.12 Hz), 3.48 (6H, m, J ) 6.70, 5.43 Hz), 2.82
(3H, sept, J ) 6.89 Hz), 1.21 (18H, d, J ) 6.90 Hz), l.14 (18H, d, J )
6.70 Hz), 0.66 (18H, d, J ) 6.65 Hz); 13C NMR (50 MHz, CDCl3, 293
K) δ 152.89 (d, J ) 18.02 Hz), 148.99 (s), 132.20 (d, J ) 24.01 Hz),
121.85 (d, J ) 4.56 Hz), 34.04 (s), 31.92 (d, J ) 17.98 Hz), 24.52 (s),
23.94 (s), 23.00 (s); 31P NMR (80 MHz, CDCl3, 293 K) δ -52.4 (s).
(13) 2: colorless prisms, mp 145-146 °C; 1H NMR (200 MHz, CDCl3, 293
K) δ 6.90 (6H, s), 3.39 (3H, sept, J ) 6.71 Hz), 3.32 (3H, sept, J ) 6.72
Hz), 2.83 (3H, sept, J ) 6.69 Hz), 1.26 (9H, d, J ) 6.68 Hz), 1.21 (18H,
d, J ) 6.91 Hz), 1.07 (9H, d, J ) 6.79 Hz), 1.01 (9H, d, J ) 6.74 Hz),
0.45 (9H, d, J ) 6.57 Hz); 13C NMR (50 MHz, CDCl3, 293 K) δ 153.08,
152.83, 148.70, 136.36, 122.76, 120.86, 34.01, 33.43, 32.67, 25.37, 24.22,
24.02, 24.00, 23.91, 22.78.
(14) 3: colorless prisms, mp 145-146 °C; 1H NMR (200 MHz, CDCl3, 294
K) δ 6.93 (6H, s), 3.32 (6H, sept, J ) 6.46 Hz), 2.84 (3H, sept, J ) 7.04
Hz), 1.32 (9H, d, J ) 6.54 Hz), 1.22 (18H, d, J ) 6.99 Hz), 1.08 (18H,
m), 0.49 (9H, d, J ) 6.32 Hz); 13C NMR (50 MHz, CDCl3, 294 K) δ
154.85, 154.78, 148.92, 137.70, 122.52, 120.97, 36.81, 35.97, 34.02, 25.92,
24.85, 24.44, 24.03, 23.91, 23.26.
(15) 4: colorless prisms, mp 149-150 °C; 1H NMR (200 MHz, CDCl3, 330
K) δ 7.09 (6H, s), 3.18 (6H, sept, J ) 6.69 Hz), 2.84 (3H, sept, J ) 6.85
Hz), 1.24 (18H, d, J ) 6.90 Hz), 1.03 (36H, brs); 13C NMR (50 MHz,
CDCl3, 330 K) δ 159.36, 155.92, 148.44, 122.54, 39.54, 34.17, 24.97,
24.00.
Acknowledgment. Financial support in part by Grants-in-Aid
for Scientific Research from the Ministry of Education, Culture,
Sports, Science, and Technology (Nos. 12740335, 08454193 and
09239101), the JSPS Postdoctoral Fellowship for F.M. by the Japan
Society for the Promotion of Science, and the elemental analysis
and mass spectral measurements by the Instrumental Analysis
Center for Chemistry, Graduate School of Science, Tohoku
University, are gratefully acknowledged. This work was partially
carried out in the Advanced Instrumental Laboratory for Graduate
Research of Department of Chemistry, Graduate School of Science,
Tohoku University.
(16) 1: C45H69P, M ) 641.01, colorless prism, 0.75 × 0.75 × 0.40 mm3,
triclinic, P1h (no. 2), a ) 11.492(2) Å, b ) 18.212(7) Å, c ) 10.496(2) Å,
R ) 100.96(2)°, â ) 91.82(1)°, γ ) 96.24(2)°, V ) 2140.8(9) Å3, Z )
2, Dcalc ) 0.994 gcm-1, µ(Mo KR) ) 0.091 mm-1, T ) 200 K, R1; R; Rw
) 0.081; 0.084; 0.166, GOF )1.66. 2: C45H69As, M ) 684.94, color-
less prism, 0.55 × 0.25 × 0.15 mm3, triclinic, P1h (no. 2), a ) 17.686(2)
Å, b ) 18.44(1) Å, c ) 14.890(2) Å, R ) 99.54(1)°, â ) 110.68(1)°, γ
) 107.37(2)°, V ) 4130(2) Å3, Z ) 4, Dcalc ) 1.101 gcm-1, µ(Mo KR)
) 0.850 mm-1, T ) 123 K, R1; R; Rw ) 0.047; 0.066; 0.064, GOF )1.65.
3: C45H69Sb, M ) 731.79, colorless prism, 0.25 × 0.20 × 0.20 mm3,
monoclinic, P21/c (no. 14), a ) 19.757(2) Å, b ) 18.344(2) Å, c ) 24.842-
(4) Å, â ) 111.049(3)°, V ) 8402(1) Å3, Z ) 8, Dcalc ) 1.157 gcm-1
,
µ(Mo KR) ) 0.683 mm-1, T ) 115 K, R1; R; Rw ) 0.034; 0.041; 0.048,
GOF )1.34.
Supporting Information Available: Experimental procedures and
spectroscopic data of 1, 2, 3, and 4, EPR spectra of 1+•, 2+•, and 3+•
(PDF), and crystallographic data for 1, 2, and 3 (CIF). This material is
(17) Driess, M.; Merz, K.; Monse´, C. Z. Anorg. Allg. Chem. 2000, 626, 2264-
2268; von Ha¨nisch, C. Z. Anorg. Allg. Chem. 2001, 627, 1414-1416.
(18) Wesemann, J.; Jones, P. G.; Schomburg, D.; Heuer, L.; Schmutzler, R.
Chem. Ber. 1992, 125, 2187-2197.
(19) 1+•: g ) 2.007, a(P) ) 23.7 mT; g| ) 2.002, a| ) 41.7 mT, g ) 2.009,
References
a
) 13.0 mT. 2+•: g ) 2.042, a(As) ) 26.4 mT; g| ) 2.002, a| ) 48.3
mT, g ) 2.020, a ) 19.5 mT.
(1) Blount, J. F.; Maryanoff, C. A.; Mislow, K. Tetrahedron Lett. 1975, 48,
913-916.
(20) Bayler, A.; Bowmaker, G. A.; Schmidbaur, H. Inorg. Chem. 1996, 35,
5959-5960.
(2) Culcasi, M.; Berchadsky, Y.; Gronchi, G.; Tordo, P. J. Org. Chem. 1991,
56, 3537-3542.
(21) Preliminary investigation on the oxidation of 3 with tris(4-bromophenyl)-
aminium perchlorate in dichloromethane also suggested formation of the
stable cation radical with characteristic violet color (λmax ) 480 nm) as
well as broad-ranging EPR spectra.
(3) Sobolev, A. N.; Romm, I. P.; Chernikova, N. Y.; Belsky, V. K.;
Guryanova, E. N. J. Organomet. Chem. 1981, 219, 35-42.
(4) Il’ysov, A. V.; Kargin, Y. M.; Vafina, A. A. Russ. J. Gen. Chem. 1993,
63, 1833-1840.
(22) Daly, J. J. J. Chem. Soc. 1964, 3799-3810.
(23) Mazhar-ul-Haque; Tayim, H. A.; Ahmed, J.; Horne, W. J. Crystallogr.
Spectrosc. Res. 1985, 15, 561-571.
(5) Palau, C.; Berchadsky, Y.; Chalier, F.; Finet, J.-P.; Gronchi, G.; Tordo,
P. J. Phys. Chem. 1995, 99, 158-163.
(6) Sasaki, S.; Murakami, F.; Yoshifuji, M. Tetrahedron Lett. 1997, 38, 7095-
(24) Sobolev, A. N.; Romm, I. P.; Belsky, V. K.; Guryanova, E. N. J.
Organomet. Chem. 1979, 179, 153-157.
7098.
(7) Brady, F. J.; Cardin, C. J.; Cardin, D. J.; Wilcock, D. J. Inorg. Chim.
Acta 2000, 298, 1-8.
(25) Ates, M.; Breunig, H. J.; Ebert, K. H.; Kaller, R.; Dra¨ger, M.; Behrens,
U. Z. Naturforsch., B: Chem. Sci. 1992, 47, 503-508.
(8) Stepanov, B. I.; Karpova, E. N.; Bokanov, A. I. Zh. Obshch Khim. 1969,
39, 1544-1549.
JA027493N
9
J. AM. CHEM. SOC. VOL. 124, NO. 50, 2002 14831