F. Pisaneschi et al. / Tetrahedron Letters 43 (2002) 5711–5714
5713
For the solid-phase synthesis of the same pyrrolizidine
Acknowledgements
19 both hydroxypolystyrenic Merrifield and Wang
resins were employed and the first coupling step
between the resins and the protected alcohol 14 was
performed by using the standard coupling procedure
(Scheme 6). Resin 20 was deprotected with DDQ and
mesylated. Treatment of resin 21 with 4 equiv. of
nitrone 10 for 11 days furnished resin 22 (Scheme 6),
whose formation was monitored by cleaving and
The authors thank Italfarmaco SpA and MIUR (Minis-
tero dell’Istruzione, dell’Universita` e della Ricerca,
Italy, COFIN 2000) for financial support and Professor
M. Taddei for helpful discussions.
1
recording an H NMR spectrum of the residue. As in
References
the previous synthesis, a long time was required to
complete the cycloaddition step at rt either in solid-
phase and in solution. Unfortunately the reactions
could not be accelerated by heating because of the
thermal instability of the cycloadducts.
1. (a) Hartmann, T.; Witte, L. In Alkaloids: Chemical and
Biological Perspectives; Pelletier, S. W., Ed. Chemistry,
Biology and Chemoecology of Pyrrolizidine Alkaloids;
Pergamon: Oxford, 1995; Vol. 9, pp. 155–233; (b) Mat-
tocks, A. R. In Chemistry and Toxicology of Pyrrolizidine
Alkaloids; Academic Press: New York, 1986; (c) Liddell,
J. R. Nat. Prod. Rep. 1998, 175–178.
Mo(CO)6 reduction procedure failed for substrate 22,
probably for steric hindrance of the isoxazolidine.6a
12
Several other reducing agents, like SmI2 and SnCl2,
2. Vaino, A. R.; Janda, K. D. J. Comb. Chem. 2000, 2,
579–596 and references cited therein.
compatible with solid-phase synthesis, were tested to
cleave the NꢀO bond, but failed.13 Finally the one-pot
3. (a) Cicchi, S.; Goti, A.; Brandi, A. J. Org. Chem. 1995,
60, 4743–4748; (b) Goti, A.; Cicchi, S.; Fedi, V.; Nan-
nelli, L.; Brandi, A. J. Org. Chem. 1997, 62, 3119–3125;
(c) Goti, A.; Cacciarini, M.; Cardona, F.; Brandi, A.
Tetrahedron Lett. 1999, 40, 2853–2856; (d) Cordero, F.
M.; Gensini, M.; Goti, A.; Brandi, A. Org. Lett. 2000, 2,
2475; (e) Cordero, F. M.; Pisaneschi, F.; Gensini, M.;
Goti, A.; Brandi, A. Eur. J. Org. Chem. 2002, 1941–1951.
4. (a) Tufariello, J. J. In 1,3-Dipolar Cycloaddition Chem-
istry; Padwa, A., Ed.; John Wiley & Sons: New York,
1984; (b) Confalone, P. N.; Huie, E. M. Org. React. 1988,
36, 1–173; (c) Torssell, K. B. G. In Nitrile Oxides,
Nitrones, and Nitronates in Organic Synthesis; Feuer, H.,
Ed.; VCH: New York, 1988; (d) Do¨pp, D.; Do¨pp, H. In
Houben-Weyl-Methoden der Organischen Chemie; Kla-
mann, D.; Hagemann, H., Eds.; Georg Thieme: Stuttgart,
1990; Vol. E14b; (e) Breuer, E. In The Chemistry of
Amino, Nitroso and Nitro Compounds and Their Deriva-
tives; Patai, S., Ed.; Wiley Interscience: New York, 1982;
(f) Frederickson, M. Tetrahedron 1997, 53, 403–425; (g)
Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98,
863–909.
NꢀO
cleavage/ring
closure/resin-cleavage
by
hydrogenolysis14 was carried out. Using Pd(OAc)2, and
H2 in DMF, pyrrolizidinium salt 23 was obtained after
filtration of the solid residue. Crude 23 was esterified in
dry EtOH in the presence of trimethylsilylchloride
(TMSCl) and treated with basic ion-exchange resin
Ambersep 900 OH to furnish 2415 in 11% overall yield
(Scheme 7) with respect to the loading of resins (Wang
resin: 1.10 mmol/g, Merrifield resin: 0.68 mmol/g).
In conclusion, the solid-phase synthesis of highly func-
tionalised enantiopure pyrrolizidines has been achieved.
A selective method to reduce the NꢀO bond of isoxazo-
lidine without removal from the resin is still necessary
to improve the methodology and it will be object of
further studies in our group.
5. Goti, A.; Cicchi, S.; Cacciarini, M.; Cardona, F.; Fedi,
V.; Brandi, A. Eur. J. Org. Chem. 2000, 3633–3645.
6. (a) Cicchi, S.; Goti, A.; Brandi, A.; Guarna, A.; De Sarlo,
F. Tetrahedron Lett. 1990, 31, 3351–33354; (b) Guarna,
A.; Guidi, A.; Goti, A.; Brandi, A.; De Sarlo, F. Synthe-
sis 1989, 175–178.
Scheme 6. Reagents and conditions: (a) DIC, DMAP, CH2Cl2,
rt; (b) (1) DDQ, H2O, CH2Cl2, rt, (2) MsCl, CH2Cl2, rt; (c)
10, toluene, rt, 11 days.
7. All solid-phase reactions were monitored by FT-IR.
8. Ethyl (1S,2R,7S,7aR)-2,7-dihydroxy-3-oxohexahydropyr-
1
rolizine-1-carboxylate (13): H NMR (200 MHz, CDCl3):
l 4.78 (d, J=9.9 Hz, 1H; H-2), 4.24 (q, J=7.0 Hz, 2H;
CH2CH3), 4.15 (q, J=6.6 Hz, 1H; H-7), 3.65 (m, 2H;
Ha-5, H-7a), 3.23 (m, 1H; Hb-5), 2.92 (dd, J=9.8, 8.5 Hz,
1H; H-1), 2.35–2.19 (m, 1H; Ha-6), 2.08–1.90 (m, 1H;
Hb-6), 1.29 (t, J=7.0 Hz, 3H; CH2CH3); 13C NMR (50
MHz, CDCl3): l 172.2 (s), 171.0 (s), 75.2 (d), 74.6 (d),
64.7 (d), 61.8 (t), 54.4 (d), 40.5 (t), 33.8 (t), 14.1 (q).
9. (a) Tufariello, J. J.; Lee, G. E. J. Am. Chem. Soc. 1980,
373–374; (b) Tufariello, J. J.; Tette, J. P. J. Org. Chem.
1975, 40, 3866–3869.
Scheme 7. Reagents and conditions: (a) Pd(OAc)2, DMF, H2,
35 atm, rt; (b) (1) TMSCl, EtOH, rt, (2) Ambersep 900 OH.
10. Rollins, S. B.; Williams, R. M. Tetrahedron Lett. 1997,
23, 4033–4036.