Carbopalladation of Nitriles
reactions of nitrile-containing organic substrates, e.g., the
cross-coupling of aryl halides with terminal acetylenes13
or organometallic reagents,14 R-allylation,15 and decar-
boxylation of R-cyanoesters.16
Palladium-mediated reactions that do modify the ni-
trile functionality9,17 usually do not involve carbopalla-
dation of the cyano group. However, there are rare
examples of the carbopalladation of nitriles. Thus, Yang
et al. have described the palladium-catalyzed arylation
of a cyano group in the intramolecular cyclization of
2-bromoarylalkenenitriles,18 and Cheng has reported the
cyano group transfer from solvents to aryl halides medi-
ated by palladium and zinc species.19
of natural products (e.g., steroids and gibberellins),
indanones, indenes, naphthols, and other compounds.7c,23
Traditionally, indenones have been synthesized via
Friedel-Crafts cyclizations or addition of organometallic
reagents to 1,3-indandiones.22a,24 Many transition-metal
reagents and catalysts have been employed in indenone
preparations in recent years.7c,23a Palladium-catalyzed
reactions leading to indenones (including annulation
approaches) have also found a place in synthetic organic
methodology.25 One such procedure developed in this
laboratory involves the annulation of internal alkynes
with 2-halobenzaldehydes.7c Although effective and rea-
sonably general, this procedure could still be improved
if more stable starting materials could be used in place
of easily oxidized aldehydes.
We have recently reported that the intramolecular
carbopalladation of the cyano group in 2-iodobenzonitrile
and 2-iodophenylacetonitrile provides a new synthetic
route to indenones, 2-aminonaphthalenes, and related
compounds.20 At this time, we report the full details of
our investigation of the carboannulation of internal
alkynes and bicyclic alkenes by 2-iodoarenenitriles that
leads to 2,3-diarylindenones and related polycyclic aro-
matic ketones (eq 1).
Resu lts a n d Discu ssion
Ongoing research in our group on palladium-catalyzed
annulation methodology6a,26 prompted us to examine
2-iodobenzonitrile as a possible substrate for annulation
onto diphenylacetylene to produce 2,3-diphenyl-1-inde-
none (1; eq 2). Encouraged by the success of the intramo-
lecular reaction of an aldehyde, a group normally inert
toward organopalladium species,7 we envisioned that a
cyano group might serve as a neighboring functional
group in this reaction and that the vinylpalladium
intermediate might add across the carbon-nitrogen triple
bond (see the later mechanistic discussion).
Under our standard reaction conditions developed for
the synthesis of fluorenes,27 2-iodobenzonitrile reacts with
diphenylacetylene to afford the fluorene product 2 in 63%
yield (eq 3). When PPh3 was omitted from the reaction
Indenones and their derivatives have been employed
as fungicides and fermentation activators.21 Their poten-
tially useful biological activity as binding agents for
estrogen receptors has been used to study the structure
of the receptor’s binding site and the orientation of the
site’s nonsteroidal ligands.22 Indenones also serve as
valuable precursors and intermediates in the synthesis
(12) (a) Chatani, N.; Takeyasu, T.; Horiuchi, N.; Hanafusa, T. J .
Org. Chem. 1988, 53, 3539. (b) Suginome, M.; Kinugasa, H.; Ito, Y.
Tetrahedron Lett. 1994, 35, 8635.
(13) (a) Sakamoto, T.; Shiga, F.; Yasuhara, A.; Uchiyama, D.;
Kondo, Y.; Yamanaka, H. Synthesis 1992, 746. (b) Bumagin, N. A.;
Sukhomlinova, L. I.; Luzikova, E. V.; Tolstaya, T. P.; Beletskaya, I.
P. Tetrahedron Lett. 1996, 37, 897. (c) Sakamoto, T.; Kondo, Y.;
Yamanaka, H. Chem. Pharm. Bull. 1985, 33, 626.
(14) (a) Kosugi, M.; Ishiguro, Y.; Negishi, Y.; Sano, H.; Migita, T.
Chem. Lett. 1984, 1511. (b) Kanai, G.; Miyaura, N.; Suzuki, A. Chem.
Lett. 1993, 845. (c) Miller, J . A.; Farrell, R. P. Tetrahedron Lett. 1998,
39, 7275. (d) Piber, M.; J ensen, A. E.; Rottla¨nder, M.; Knochel, P. Org.
Lett. 1999, 1, 1323.
(15) Sawamura, M.; Sudoh, M.; Ito, Y. J . Am. Chem. Soc. 1996, 118,
3309.
conditions shown in eq 3, the reaction furnished 2 in 56%
yield. When the solvent was changed from DMF to 9:1
DMF-water, to our delight, the major identifiable prod-
uct (28%) was found to be the target indenone 1 (eq 2),
while none of the fluorene 2 was detected.
(16) Minami, I.; Nisar, M.; Yuhara, M.; Shimizu, I.; Tsuji, J .
Synthesis 1987, 992.
(17) (a) Bose, A.; Saha, C. R. J . Mol. Catal. 1989, 49, 271. (b) He´nin,
F.; Le´tinois, S.; Muzart, J . Tetrahedron Lett. 1997, 38, 7187. (c) Wei,
L.-M.; Lin, C.-F.; Wu, M.-J . Tetrahedron Lett. 2000, 41, 1215.
(18) (a) Yang, C.-C.; Tai, H.-M.; Sun, P.-J . J . Chem. Soc., Perkin
Trans. 1 1997, 2843. (b) Deng, J .-H.; Tai, H.-M.; Yang, C.-C. J . Chin.
Chem. Soc. 2000, 47, 327.
(23) (a) Vicente, J .; Abad, J .-A.; Gil-Rubio, J . Organometallics 1996,
15, 3509, and references therein. (b) Buggle, K.; Ghogain, U. N.;
O’Sullivan, D. J . Chem. Soc., Perkin Trans. 1 1983, 2075.
(24) Galatsis, P.; Manwell, J . J .; Blackwell, J . M. Can. J . Chem.
1994, 72, 1656 and references therein.
(19) Luo, F.-H.; Chu, C.-I.; Cheng, C.-H. Organometallics 1998, 17,
1025.
(20) Larock, R. C.; Tian, Q.; Pletnev, A. A. J . Am. Chem. Soc. 1999,
121, 3238.
(25) For the most recent example, see: Hauser, F. M.; Zhou, M.;
Sun, Y. Synth. Commun. 2001, 31, 77.
(21) (a) J ourdan, G. P.; Dreikorn, B. A.; Hackler, R. E.; Hall, H. R.;
Arnold, W. R. In Synthesis and Chemistry of Agrochemicals II; ACS
Symposium Series; American Chemical Society: Washington, DC,
1991; p 566. (b) Frank, R. L.; Eklund, H.; Richter, J . W.; Vanneman,
C. R.; Wennerberg, A. N. J . Am. Chem. Soc. 1944, 66, 1.
(22) (a) Anstead, G. M.; Ensign, J . L.; Peterson, C. S.; Katzenellen-
bogen, J . A. J . Org. Chem. 1989, 54, 1485. (b) Gao, H.; Katzenellen-
bogen, J . A.; Garg, R.; Hansch, C. Chem. Rev. 1999, 99, 723.
(26) (a) Larock, R. C. Pure Appl. Chem. 1999, 71, 1435. (b) Roesch,
K. R.; Zhang, H.; Larock, R. C. J . Org. Chem. 2001, 66, 8042. (c) Zhang,
H.; Larock, R. C. Org. Lett. 2001, 3, 3083. (d) Roesch, K. R.; Larock, R.
C. J . Org. Chem. 2001, 66, 412. (e) Kadnikov, D. V.; Larock, R. C. Org.
Lett. 2000, 2, 3643. (f) Gagnier, S. V.; Larock, R. C. J . Org. Chem. 2000,
65, 1525. (g) Larock, R. C.; Doty, M. J .; Han, X. J . Org. Chem. 1999,
64, 8770.
(27) Larock, R. C.; Tian, Q. J . Org. Chem. 2001, 66, 7372.
J . Org. Chem, Vol. 67, No. 26, 2002 9277