Enantioenriched α-Thioallyllithium Compounds
FULL PAPER
thiol was assigned on the basis of the order of elution of its
acetate during chromatography on cellulose triacetate; the as-
signment was made by analogy with the chromatographic
properties of substituted five- and six-membered-ring lactones.
T. Fukazawa, T. Hashimoto, Tetrahedron: Asymmetry
T. Fukazawa, Y. Shimoji, T. Hashimoto,
Tetrahedron: Asymmetry 1996, 6, 1649.
[7]
L represents a donor ligand at the lithium cation; the structures
of these ligands are omitted for the sake of clarity.
[8]
P. Beak, S. T. Kerrick, S. Wu, J. Chu, J. Am. Chem. Soc. 1994,
116, 8616.
[27] [27a]
[9a] G. A. Weissenburger, P. Beak, J. Am. Chem. Soc. 1996, 118,
[9]
[27b]
[9b]
1993, 4, 2323.
12218.
D. J. Pippel, G. A. Weissenburger, N. C. Faibish, P.
Beak, J. Am. Chem. Soc. 2001, 123, 4919.
[28] [28a]
[10]
M. Asami, T. Ishizaki, S. Inoue, Tetrahedron: Asymmetry
High configurational stability is found for N-alkyl-2-lithiopyr-
rolidines, which cannot be formed by direct deprotonation; see:
R. E. Gawley, Q. Zhang, J. Am. Chem. Soc. 1993, 115, 7515.
[28b]
1994, 5, 793.
D. Bhuniya, A. DattaGupta, V. K. Singh, J.
Org. Chem. 1996, 61, 6108. [28c] M. J. Södergren, P. G. Anders-
son, J. Am. Chem. Soc. 1998, 120, 10760.
[11] [11a] R. W. Hoffmann, T. Rühl, J. Harbach, Liebigs Ann. Chem.
[11b]
[29] [29a]
1992, 725.
H. Ahlbrecht, J. Harbach, R. W. Hoffmann, T.
K. B. Sharpless, T. R. Verhoeven, Aldrichim. Acta 1979,
[29b]
Ruhland, Liebigs Ann. 1995, 211. [11c] R. K. Dress, T. Rölle, R.
W. Hoffmann, Chem. Ber. 1995, 128, 673. [11d] R. W. Hoffmann,
R. K. Dress, T. Ruhland, A. Wenzel, Chem. Ber. 1995, 128, 861.
12, 63.
1980, 102, 5974.
T. Katsuki, K. B. Sharpless, J. Am. Chem. Soc.
[29c]
V. S. Martin, S. S. Woodard, T. Karsuki,
Y. Yamada, M. Ikeda, K. B. Sharpless, J. Am. Chem. Soc. 1981,
103, 6237.
[12] [12a] H. J. Reich, R. R. Dykstra, Angew. Chem. 1993, 105, 1489;
[12b]
[30]
Angew. Chem. Int. Ed. Engl. 1993, 32, 1469.
R. R. Dykstra, J. Am. Chem. Soc. 1993, 115, 7041.
H. J. Reich,
The maximum chirality transfer is achieved if the rearrange-
ment of enantioenriched O-ester 12b proceeds exclusively
through a cyclic transition state. We tried to impose a cyclic
transition state on the rearrangement by addition of PdII salts
in different solvents; this should produce a cationic bicyclic
transition state of the rearrangement through electrophilic ad-
dition of Pd2ϩ onto the double bond and subsequent nucleo-
philic attack of the sulfur atom on the generated carbocation.
However, a marked loss of enantioenrichment was observed,
which may result from thiocarbamate-induced reduction of
PdII to Pd0, which is known to catalyze the rearrangement
through a dissociative reaction pathway involving a stabilized
allylic cation.[21b]
[12c]
H. J.
[12d]
Reich, K. J. Kulicke, J. Am. Chem. Soc. 1995, 117, 6621.
H. J. Reich, K. J. Kulicke, J. Am. Chem. Soc. 1996, 118, 273.
R. W. Hoffmann, M. Julius, F. Chemla, T. Ruhland, G.
Frenzen, Tetrahedron 1994, 50, 6049.
[13]
[14]
W. Klute, M. Krüger, R. W. Hoffmann, Chem. Ber. 1996,
129, 633.
[15] [15a] R. W. Hoffmann, M. Julius, K. Oltmann, Tetrahedron Lett.
[15b]
1990, 31, 7419.
R. W. Hoffmann, M. Bewersdorf, Liebigs
[15c]
Ann. Chem. 1992, 643.
T. Ruhland, R. Dress, R. W.
Hoffmann, Angew. Chem. 1993, 105, 1487; Angew. Chem. Int.
[15d]
Ed. Engl. 1993, 32, 1467.
See refs.[11a,11b,11d,12a]
[31]
[32]
[16]
By General Procedure B, as given in the Exp. Sect. The same
lithiation conditions were employed for alkylations in General
Procedure C.
α-Thio- and α-seleno-substituted Grignard reagents sometimes
show markedly higher configurational stability; for example
see: α-thio: P. G. Nell, New J. Chem. 1999, 973; α-seleno; see:
ref.[14]
The given stereospecificity refers to the transmission of enanti-
oenrichment for the overall process of lithiation and elec-
trophilic substitution. We expect that lithiation should proceed
with absolute stereospecificity, in consequence the given ste-
reospecificity should result from a combination of the config-
urational stability of dilithiated species and the enantiospecific-
ity of the electrophilic substitution step.
[17] [17a] J.-M. Lehn, G. Wipff, J. Demuynck, Helv. Chim. Acta 1977,
[17b]
60, 1239.
P. v. R. Schleyer, T. Clark, A. J. Kos, G. W.
Spitznagel, C. Rohde, D. Arad, K. N. Houk, N. G. Rondan, J.
[17c]
Am. Chem. Soc. 1984, 106, 6467.
W. Zarges, M. Marsch,
K. Harms, W. Koch, G. Frenking, G. Boche, Chem. Ber. 1991,
[17d]
121, 543.
K. B. Wiberg, H. Castejon, J. Am. Chem. Soc.
For methylation of dianion 9, other Meϩ sources such as
F3CSO3Me were not applicable.
[33]
[34]
[35]
1994, 116, 10489. [17e] A. M. Elnahas, P. v. R. Schleyer, J. Com-
put. Chem. 1994, 15, 596.
[18]
This property of thiocarbamate 21b might be used to prepare
larger quantities (Ͼ 1 mmol) of high enantiomeric purity.
This can be regarded as additional evidence that inversion of
the carbanionic center in 16 (or 9 and 17) is not the rate-deter-
mining step of racemization, because the presence of an excess
of Liϩ should facilitate the inversion by an associative process
(SE2 process).
This procedure turned out to be extremely efficient for the or-
tho-lithiation of aromatic N-isopropylcarbamates, see: M.
Kauch, D. Hoppe, Can. J. Chem. 2001, 79, 1736Ϫ1746.
The absolute configurations were assigned in analogy with
methylation of cyclohexenyllithium compounds (R)-9 and (S)-
16.
B. Kaiser, D. Hoppe, Angew. Chem. 1995, 107, 344, Angew.
Chem. Int. Ed. Engl. 1995, 34, 323.
[19] [19a]
D. Hoppe, B. Kaiser, O. Stratmann, R. Fröhlich, Angew.
Chem. 1997, 109, 24, 2872; Angew. Chem. Int. Ed. Engl. 1997,
[19b]
36, 2784.
O. Stratmann, D. Hoppe, R. Fröhlich, J. Prakt.
[19c]
Chem. 2000, 342, 828.
O. Stratmann, B. Kaiser, R.
Fröhlich, O. Meyer, D. Hoppe, Chem. Eur. J. 2001, 7, 423.
F. Marr, R. Fröhlich, D. Hoppe, Org. Lett. 1999, 1, 2081.
[36]
[37]
[38]
[20]
[21] [21a]
H. Harayama, T. Kozera, M. Kimura, S. Tanaka, Y. Tam-
[21b]
aru, Chem. Lett. 1996, 543.
H. Harayama, T. Nagahama,
T. Kozera, M. Kimura, K. Fugami, S. Tanaka, Y. Tamaru,
Bull. Chem. Soc. Jpn. 1997, 70, 445.
N-Methylmonothiocarbamates are easily accessible by addition
of allylic alcohols to solid MeNCS in this way, whereas a thiol-
based synthesis would require the use of hazardous, volatile
MeNCO.
[22]
F. Marr, Dissertation, Westfälische Wilhelms-Universität
Münster, 2001, p. 91, 242.
[39] [39a]
T. Hayashi, N. Fujitaka, T. Oishi, T. Takeshima, Tetrahed-
[23] [23a]
[23b]
R. E. Hackler, T. W. Balko, J. Org. Chem. 1973, 38, 2106.
ron Lett. 1980, 21, 303. [39b] D. Hoppe, R. Hanko, A. Brönneke,
F. Lichtenberg, E. v. Hülsen, Chem. Ber. 1985, 118, 2822.
H. E. Zimmermann, M. D. Traxler, J. Am. Chem. Soc. 1957,
[23c]
T. Hayashi, Tetrahedron Lett. 1974, 15, 339.
T. Nakai,
H. Shiono, M. Okawara, Tetrahedron Lett. 1974, 15, 3625. [23d]
T. Nakai, A. Ari-Izumi, Tetrahedron Lett. 1976, 17, 2355.
Harayama reported low des for the thermal activated re-
arrangement of O-6-carvyl N-methylthiocarbamates, see
ref.[21b]
[40]
[41]
79, 1920.
[24]
[41a]
For the same reaction with carbamates (O for S) see:
D.
Hoppe, T. Krämer, Angew. Chem. 1986, 98, 171; Angew. Chem.
[41b]
Int. Ed. Engl. 1986, 25, 160.
T. Krämer, D. Hoppe, Tetra-
[25] [25a]
R. Oehrlein, R. Jeschke, B. Ernst, D. Bellus, Tetrahedron
hedron Lett. 1987, 28, 5149. [41c] D. Hoppe, O. Zschage, Angew.
Chem. 1989, 101, 67; Angew. Chem. Int. Ed. Engl. 1989, 28, 67;
correction of configuration in: O. Zschage, D. Hoppe, Tetra-
hedron 1992, 48, 5657.
[25b]
Lett. 1989, 3517.
bemeyer, R. Oehrlein, D. Bellus, Helv. Chim. Acta 1997, 80,
B. Ernst, J. Gonda, R. Jeschke, U. Nub-
[25c]
876.
10, 2511.
A. Böhme, H.-J. Gais, Tetrahedron: Asymmetry 1999,
[42]
Recent investigations employing acyclic thiocarbamates have
found a different synthetic approach to aldehyde adducts with
In refs.[25a,25b] the absolute configuration of cyclohex-2-ene-1-
[26]
Eur. J. Org. Chem. 2002, 2970Ϫ2988
2987