Iron-Catalyzed Cross-Coupling
solution was stirred for 1 h. The organic layer was separated; the
aqueous phase was extracted twice with Et2O. The organic layers
were then collected, washed with saturated sodium chloride solu-
tion, dried with magnesium sulfate, and concentrated in a rotary
evaporator. The crude product was purified by column chromatog-
raphy (Et2O/hexanes, 98:2).
be considered as the synthetic precursors of combretastatin
analogs. Partial hydrogenation of 2m–n with Lindlar’s cata-
lyst led selectively to (Z)-alkenes 6a–b in excellent yields
(78% and 82%) (Scheme 4).[16] Compound 6b is known to
be one of the most active CA4 analogs possessing anti-
mitotic activity with inhibition of tubuline polymerization
IC50 values similar to that of natural Combretastatin A-4
(2.5Ϯ0.1 of 6b vs. 2.0Ϯ0.3 of CA4).[17]
Supporting Information (see footnote on the first page of this arti-
cle): Full characterization of new compounds, NMR spectra.
Acknowledgments
This study was supported by grants from the FLUINHIBIT Con-
sortiums.
[1] a) Metal-catalyzed Cross-coupling Reactions (Eds.: F. Dieder-
ich, P. J. Stang), Wiley-VCH, Weinheim, 1988; b) J. Tsuji, Tran-
sition Metal Reagents and Catalyst: Innovations in Organic Syn-
thesis, Wiley, Chichester, 1995.
[2] a) M. Tamura, J. K. Kochi, J. Am. Chem. Soc. 1971, 93, 1487;
b) S. Neumann, J. K. Kochi, J. Org. Chem. 1975, 40, 599; c)
R. S. Smith, J. K. Kochi, J. Org. Chem. 1976, 41, 502; d) G.
Molander, B. Rahn, D. C. Shubert, S. E. Bonde, Tetrahedron
Lett. 1983, 24, 5449.
[3] a) G. Cahiez, S. Marquais, Pure Appl. Chem. 1996, 68, 669; b)
G. Cahiez, S. Marquais, Tetrahedron Lett. 1996, 37, 1773; c) G.
Cahiez, H. Avedissian, Synthesis 1998, 1199; d) K. Shinokubo,
K. Oshima, Eur. J. Org. Chem. 2004, 2081; e) M. A. Fakhfakh,
X. Franck, R. Hocquemiller, B. Figadre, J. Organomet. Chem.
2001, 624, 131; f) M. Hocek, H. Dvorkov, J. Org. Chem. 2003,
68, 5773; g) B. Holzer, R. W. Hoffmann, Chem. Commun. 2003,
732; h) W. Dohle, F. Kopp, G. Cahiez, P. Knochel, Synlett
2001, 1901; i) M. Hojo, Y. Murakami, H. Aihara, R. Sakuragi,
Y. Baba, A. Hosomi, Angew. Chem. Int. Ed. 2001, 40, 621; j)
M. Nakamura, A. Hirai, E. Nakamura, J. Am. Chem. Soc.
2001, 123, 978; k) E. Alvarez, T. Cuvigny, C. H. du Penhoat,
M. Julia, Tetrahedron 1998, 54, 119; l) V. Finandanese, G. Mar-
chese, V. Martina, L. Ronzini, Tetrahedron Lett. 1984, 25, 4805;
m) G. Cahiez, V. Habiak, O. Gager, Org. Lett. 2008, 10, 5255–
5256.
[4] a) P. Le Marquand, G. C. Tsui, J. C. C. Whitney, W. Tam, J.
Org. Chem. 2008, 73, 7829–7832; b) G. A. Molander, B. J.
Rahn, D. C. Shubert, S. E. Bonde, Tetrahedron Lett. 1983, 24,
5449; c) A. Furstner, A. Leitner, M. Mendez, H. Krause, J.
Am. Chem. Soc. 2002, 124, 13856; d) T. Hatakeyama, M. Nak-
amura, J. Am. Chem. Soc. 2007, 129, 9844; e) I. Sapountzis, W.
Lin, C. Kofink, C. Despotoulou, P. Knochel, Angew. Chem.
Int. Ed. 2005, 44, 1654; f) C. Kofink, B. Blank, S. Pagano, N.
Gotz, P. Knochel, ChemCommun. 2007, 1954; g) R. Martin, A.
Furstner, Angew. Chem. Int. Ed. 2004, 43, 3955–3957; h) K.
Dongol, H. Koh, M. Sau, C. Chai, Adv. Synth. Catal. 2007,
349, 1015; i) T. Nagano, T. Hayashi, Org. Lett. 2004, 6, 1297–
1299; j) M. Nakamura, K. Matsuo, S. Ito, E. Nakamura, J.
Am. Chem. Soc. 2004, 126, 3686–3687.
Scheme 4. Synthesis of Combretastatin analogs.
Conclusions
We report the first example of iron-catalyzed cross-cou-
pling reaction between C(sp) and C(sp2/sp3) centres.
Haloalkynes were converted into aryl/alkyl-acetylenes
through coupling with magnesium-derived organocuprates
generated in situ from Grignard reagents and CuCl. The
use of organocopper instead of simple Grignard reagents
was the key factor to suppress the undesirable side homo-
coupling and to lead the reaction to completion. The pres-
ent methodology represents a valid and alternative way to
standard methodologies in the synthesis of substituted al-
kynes. Finally, it could represent a fast and versatile ap-
proach for the synthesis of natural and synthetic biolo-
gically active combretastatin and stilbenoid analogues that
can be obtained in only two steps with a high degree of
stereoselectivity.
Experimental Section
A dry 50 mL flask, equipped with a mechanical stirrer and a sep-
tum, was charged with THF (4 mL) and CuCl (2.2 mmol), and
cooled to 0 °C. Then the arylmagnesium bromide/chloride
(2.2 mmol), as a solution in THF, was added dropwise in 5 min.
After completion of the addition, the reaction mixture was stirred
at room temperature for an additional 20 min. In a separate 10 mL
flask, equipped with a mechanical stirrer and a septum, alkynyl
bromide (1 mmol) was dissolved in THF (2 mL). To the alkyne
solution was added Fe(acac)3 (35 mg, 0.1 mmol), and the resulting
solution was stirred at room temperature for 10 min. The alkyne
solution was then transferred dropwise into the first solution
through a cannula. The reaction mixture was stirred at room tem-
perature for an additional 3 h. An NH4Cl saturated solution
(10 mL) and NH4OH (2 drops) were then added, and the resulting
[5] a) D. Castagnolo, L. Botta, M. Botta, J. Org. Chem. 2009, 74,
3172–3174; b) D. Castagnolo, L. Botta, M. Botta, Tetrahedron
Lett. 2009, 50, 1526–1528; c) D. Castagnolo, G. Giorgi, R. Spi-
nosa, F. Corelli, M. Botta, Eur. J. Org. Chem. 2007, 22, 3676–
3686.
[6] a) R. Chinchilla, C. Najera, Chem. Rev. 2007, 107, 874; b) H.
Doucet, J.-C. Hierso, Angew. Chem. Int. Ed. 2007, 46, 834; c)
H. Plenio, Angew. Chem. Int. Ed. 2008, 47, 6954.
[7] E. J. Corey, P. L. Fuchs, Tetrahedron Lett. 1972, 13, 3769–3772.
[8] D. Seyferth, R. S. Marmor, P. Hilbert, J. Org. Chem. 1971, 36,
1379–1386.
[9] J. Quintin, X. Franck, R. Hocquemiller, B. Figadere, Tetrahe-
dron Lett. 2002, 43, 3547.
[10] K. Reddy, P. Knochel, Angew. Chem. Int. Ed. Engl. 1996, 35,
1700.
Eur. J. Org. Chem. 2010, 3224–3228
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
3227