Molybdenum Carbonyl Complexes Bearing PN Ligands
δ = 156.3 (Ph), 155.7 (d, JCP = 17.2 Hz, py2), 148.3 (py6), 146.6 110.9 (d, JCP = 5.7 Hz, py3), 65.5 (d, JCP = 7.5 Hz, CH2) ppm.
(Ph), 137.7 (py4), 133.2 (d, JCP = 18.2 Hz, Ph), 126.3 (Ph), 124.3
31P{1H} NMR (CD Cl , 20 °C): δ = 190.6 ppm. IR (ATR): ν =
˜
2 2
(Ph), 112.1 (py5), 112.1 (Ph), 110.1 (d, JCP = 14.4 Hz, py3), 35.5 2025 (s, νC=O), 1920 (s, νC=O), 1887 (s, νC=O), 1850 (s, νC=O) cm–1.
[C(CH3)3], 34.7 [C(CH3)3], 31.6 [C(CH3)3], 31.3 [C(CH3)3] ppm.
Mo(PN-BIPOL)(CO)4 (1e): This compound was prepared analo-
31P{1H} NMR (CDCl3, 20 °C): δ = 151.0 ppm.
gously to 1a with PN-BIPOL (0.76 g, 2.45 mmol) and Mo(CO)6
Mo(PN-Ph)(CO)4 (1a): A mixture of PN-Ph (0.50 g, 1.80 mmol) (0.65 g, 2.45 mmol) as the starting materials; yield 1.03 g (81%).
and Mo(CO)6 (0.46 g, 1.80 mmol) was stirred in toluene at 90 °C C21H13MoN2O6P (516.26): calcd. C 48.86, H 2.54, N 5.43; found
1
for 6 h. After that time the solvent was removed under reduced
pressure and the crude product was purified by flash chromatog-
raphy (neutral Al2O3, eluent CH2Cl2); yield 0.59 g (68%).
C 48.79, H 2.52, N 5.38. H NMR (δ = , CD2Cl2, 20 °C): 8.52 (d,
J = 4.7 Hz, 1 H, py6), 7.64–7.08 (m, 9 H, py4 and Ph), 6.82–6.79
(m, 2 H, py3, and py5), 6.60–6.52 (m, 1 H, NH) ppm. 13C{1H}
C21H15MoN2O4P (486.27): calcd. C 51.87, H 3.11, N 5.76; found NMR (CD2Cl2, 20 °C): δ = 218.5 (d, JCP = 10.9 Hz, CO), 214.4
1
C 51.99, H 3.02, N 5.61. H NMR (δ = , CD2Cl2, 20 °C): 8.51 (d,
(d, JCP = 55.7 Hz, CO), 206.2 (d, JCP = 13.8 Hz, CO), 157.8 (d,
J = 5.4 Hz, 1 H, py6), 7.66–7.50 (m, 11 H, py4, and Ph), 6.91 (d, J
JCP = 20.7 Hz, py2), 153.9 (d, JCP = 4.6 Hz, py6), 148.8 (d, JCP
=
= 8.4 Hz, 1 H, py3), 6.69 (t, J = 6.6 Hz, 1 H, py5), 6.18 (d, J = 9.2 Hz, Ph), 139.4 (py4), 130.3 (d, JCP = 2.3 Hz, Ph), 129.9 (d, JCP
5.8 Hz, 1 H, NH) ppm. 13C{1H} NMR (CD2Cl2, 20 °C): δ = 220.7 = 1.7 Hz, Ph), 129.8 (d, JCP = 1.7 Hz, Ph), 126.2 (d, JCP = 1.7 Hz,
(d, JCP = 7.0 Hz, CO), 216.1 (d, JCP = 34.9 Hz, CO), 208.1 (d, JCP Ph), 121.9 (d, JCP = 2.9 Hz, Ph), 116.8 (py5), 111.2 (d, JCP = 6.9 Hz,
= 9.5 Hz, CO), 160.0 (d, JCP = 15.5 Hz, py2), 153.6 (d, JCP
=
py3) ppm. 31P{1H} NMR (CD2Cl2, 20 °C): δ = 196.5 ppm. IR
4.5 Hz, py6), 139.0 (py4), 137.7 (d, JCP = 39.4 Hz, Ph), 130.6 (d, (ATR): ν = 2022 (s, νC=O), 1944 (s, νC=O), 1885 (s, νC=O), 1860 (s,
˜
JCP = 15.5 Hz, Ph), 130.6 (d, JCP = 2.0 Hz, Ph), 128.7 (d, JCP
=
νC=O) cm–1.
10.0 Hz, Ph), 115.7 (py5), 111.2 (d, JCP = 6.0 Hz, py3) ppm.
Mo(PN-BIPOL2tBu)(CO)4 (1f): This compound was prepared anal-
ogously to 1a with PN-BIPOL2tBu (0.381 g, 0.728 mmol) and
Mo(CO)6 (0.192 g, 0.728 mmol) as the starting materials; yield
0.352 g (65%). C37H45MoN2O6P (740.69): calcd. C 60.00, H 6.12,
31P{1H} NMR (CD Cl , 20 °C): δ = 95.9 ppm. IR (ATR): ν = 2075
˜
2
2
(s, νC=O), 1895 (s, νC=O), 1807 (s, νC=O) cm–1.
Mo(PN-iPr)(CO)4 (1b): This compound was prepared analogously
to 1a with PN-iPr (0.50 g, 2.39 mmol) and Mo(CO)6 (0.63 g,
2.39 mmol) as the starting materials; yield 0.66 g (66%).
1
N 3.78; found C 59.89, H 6.08, N 3.81. H NMR (CD2Cl2, 20 °C):
δ = 8.52 (s, 1 H, py6), 7.55–7.12 (m, 5 H, py4, and Ph), 6.74–6.59
C15H19MoN2O4P (418.24): calcd. C 43.08, H 4.58, N 6.70; found (m, 3 H, py3, py5, and NH), 1.54–1.24 [m, 36 H, C(CH3)3] ppm.
1
C 43.12, H 4.62, N 6.61. H NMR (CD2Cl2, 20 °C): δ = 8.41 (d, J 13C{1H} NMR (CD2Cl2, 20 °C): δ = 219.2 (d, JCP = 10.9 Hz, CO),
= 4.9 Hz, 1 H, py6), 7.49 (vt, J = 7.3 Hz, 1 H, py4), 6.75 (d, J = 215.2 (d, JCP = 56.9 Hz, CO), 206.7 (d, JCP = 12.1 Hz, CO), 157.5
8.2 Hz, 1 H, py3), 6.58 (vt, J = 6.2 Hz, 1 H, py5), 5.45 (d, J =
4.4 Hz, 1 H, NH), 2.44–2.23 [m, 2 H, CH(CH3)2], 1.34–1.20 [m, 12
(d, JCP = 19.5 Hz, py2), 153.7 (d, JCP = 4.6 Hz, py6), 147.6 (Ph),
145.7 (d, JCP = 10.9 Hz, Ph), 140.6 (d, JCP = 3.4 Hz, Ph), 139.4 (d,
H, CH(CH3)2] ppm. 13C{1H} NMR (CD2Cl2, 20 °C): δ = 221.5 (d, JCP = 3.4 Hz, py4), 131.6 (d, JCP = 2.9 Hz, Ph), 127.2 (Ph), 124.9
JCP = 7.0 Hz, CO), 215.7 (d, JCP = 33.4 Hz, CO), 209.6 (d, JCP
=
(Ph), 116.4 (py5), 111.0 (d, JCP = 6.3 Hz, py3), 35.4 [C(CH3)3], 34.6
9.5 Hz, CO), 161.0 (d, JCP = 12.0 Hz, py2), 153.4 (d, JCP = 4.5 Hz, [C(CH3)3], 31.2 [C(CH3)3], 30.9 [C(CH3)3] ppm. 31P{1H} NMR
py6), 138.8 (py4), 114.8 (py5), 110.6 (d, JCP = 5.0 Hz, py3), 30.6 and
30.3 [2s, CH(CH3)2], 18.2 and 18.1 [2s, CH(CH3)2] ppm. 31P{1H}
(CD Cl , 20 °C): δ = 194.2 ppm. IR (ATR): ν = 2028 (s, νC=O),
˜
2 2
1959 (s, νC=O), 1915 (s, νC=O), 1877 (s, νC=O) cm–1.
NMR (CD Cl , 20 °C): δ = 124.1 ppm. IR (ATR): ν = 2019 (s,
˜
2
2
Mo(PN-TARMe)(CO)4 (1g): This compound was prepared analo-
gously to 1a with PN-TARMe (0.40 g, 1.33 mmol) and Mo(CO)6
(0.35 g, 1.33 mmol) as the starting materials; yield 0.51 g (75%).
νC=O), 1879 (s, νC=O), 1818 (s, νC=O) cm–1.
Mo(PN-tBu)(CO)4 (1c): This compound was prepared analogously
to 1a with PN-tBu (0.41 g, 1.74 mmol) and Mo(CO)6 (0.46 g, C15H13MoN2O10P (508.19): calcd. C 35.45, H 2.58, N 5.51; found
1
1.74 mmol) as the starting materials; yield 0.57 g (74%).
C 35.38, H 2.53, N 5.60. H NMR (CD2Cl2, 20 °C): δ = 8.44 (br.
C17H23MoN2O4P (446.29): calcd. C 45.75, H 5.19, N 6.28; found s, 1 H, py6), 7.59 (br. s, 2 H, py4 and py3), 6.84–6.74 (m, 2 H, py5
1
C 45.69, H 5.02, N 6.39. H NMR (CD2Cl2, 20 °C): δ = 8.39 (d, J and NH), 5.33–5.10 (m, 2 H, CH), 3.93 (s, 3 H, COOCH3), 3.90
= 5.4 Hz, 1 H, py6), 7.49 (vt, J = 7.6 Hz, 1 H, py4), 6.87 (d, J = (s, 3 H, COOCH3) ppm. 13C{1H} NMR (CD2Cl2, 20 °C): δ = 218.5
8.2 Hz, 1 H, py3), 6.59 (vt, J = 6.3 Hz, 1 H, py5), 5.54 (d, J =
3.9 Hz, 1 H, NH), 1.42 and 1.36 [s, 9H each, C(CH3)3] ppm.
(d, JCP = 11.5 Hz, CO), 214.8 (d, JCP = 55.7 Hz, CO), 205.8 (d,
JCP = 13.8 Hz, CO), 205.6 (d, JCP = 13.8 Hz, CO), 170.9 (s,
13C{1H} NMR (CD2Cl2, 20 °C): δ = 222.2 (d, JCP = 6.9 Hz, CO), COOCH3), 168.3 (d, JCP = 2.3 Hz, COOCH3), 157.4 (d, JCP
=
216.4 (d, JCP = 34.9 Hz, CO), 211.4 (d, JCP = 8.3 Hz, CO), 161.5 20.1 Hz, py2), 153.3 (d, JCP = 5.2 Hz, py6), 139.2 (py4), 116.6 (py5),
(d, JCP = 10.6 Hz, py2), 153.2 (d, JCP = 4.6 Hz, py6), 138.9 (py4), 111.4 (d, JCP = 6.3 Hz, py3), 78.1 (d, JCP = 8.0 Hz, CH), 76.7 (d,
115.0 (py5), 111.1 (d, JCP = 4.6 Hz, py3), 37.7 [d, JCP = 9.2 Hz,
C(CH3)3], 28.8 and 28.7 [s, C(CH3)3] ppm. 31P{1H} NMR (CD2Cl2,
JCP = 10.3 Hz, CH), 53.8 (s, COOCH3), 53.7 (s, COOCH3) ppm.
31P{1H} NMR (CD Cl , 20 °C): δ = 202.9 ppm. IR (ATR): ν =
˜
2
2
20 °C): δ = 138.2 ppm. IR (ATR): ν = 2010 (s, νC=O), 1903 (s,
2030 (s, νC=O), 1900 (s, νC=O), 1857 (s, νC=O) cm–1.
˜
νC=O), 1880 (s, νC=O), 1812 (s, νC=O) cm–1.
Mo(PN-iPr)(η3-allyl)(CO)2Br (2). Method 1: A solution of 1b
(0.23 g, 0.54 mmol) in 10 mL of anhydrous toluene was treated with
a slight excess of allyl bromide (51 µL, 0.60 mmol) and heated at
90 °C for 15 h. After removal of the solvent under reduced pressure
the product was washed twice with n-pentane and dried under vac-
Mo(PN-ETOL)(CO)4 (1d): This compound was prepared analo-
gously to 1a with PN-ETOL (0.37 g, 2.02 mmol) and Mo(CO)6
(0.53 g, 2.02 mmol) as the starting materials; yield 0.63 g (80%).
C11H9MoN2O6P (392.12): calcd. C 33.69, H 2.31, N 7.14; found C
33.58, H 2.22, N 7.12. H NMR (δ = , CD2Cl2, 20 °C): 8.42 (d, J uum; yield 0.22 g (82%). Method 2: A solution of Mo(η3-allyl)-
= 4.7 Hz, 1 H, py6), 7.56 (vt, J = 7.5 Hz, 1 H, py4), 6.75–6.69 (m, (CO)2(CH3CN)2Br (0.300 g, 0.845 mmol) was treated with PN-iPr
(0.178 g, 0.845 mmol) in 10 mL of CH2Cl2. The deep red solution
(CD2Cl2, 20 °C): δ = 219.1 (d, JCP = 11.5 Hz, CO), 214.8 (d, JCP was stirred for 2 h. After removal of the solvent, the product was
1
3 H, py3,5, NH), 4.35–4.30 (m, 4 H, CH2) ppm. 13C{1H} NMR
= 53.4 Hz, CO), 206.1 (d, JCP = 13.2 Hz, CO), 157.8 (d, JCP
=
dried under vacuum; yield 0.342 g (83.8%). C16H24BrMoN2O2P
(483.20): calcd. C 39.77, H 5.01, N 5.80; found C 39.70, H 5.06, N
19.0 Hz, py2), 153.4 (d, JCP = 5.2 Hz, py6), 139.1 (py4), 116.3 (py5),
Eur. J. Inorg. Chem. 2009, 4085–4093
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
4091