LETTER
Asymmetric Synthesis of D-Galactose
1639
(10) The reactivity of glycolate enolates have been extensively
reported. For glycolate enolate alkylations see:
work is currently being directed toward the extension of
this strategy to allow the incorporation of both syn- and
anti-aldol combinations in this iterative, three stage, two
carbon homologation protocol for the synthesis of the set
of D- and L-hexoses and its application to higher homo-
logues. The automation of this process for the synthesis of
libraries of monosaccharides is simultaneously underway.
(a) Crimmins, M. T.; Emmitte, K. A.; Katz, J. D. Org. Lett.
2000, 2, 2165. (b) Burke, S. D.; Quinn, K. J.; Chen, V. J. J.
Org. Chem. 1998, 63, 8626. (c) For glycolate enolate
additions to acyclic ketimines see: Bravo, P.; Fustero, S.;
Guidetti, M.; Volonterio, A.; Zanda, M. J. Org. Chem. 1999,
64, 8731.
(11) For representative examples of other glycolate aldol
reactions see: (a) Roush, W. R.; Pfeifer, L. A.; Marron, T. G.
J. Org. Chem. 1998, 63, 2064. (b) Kim, K. S.; Hong, S. D.
Tetrahedron Lett. 2000, 41, 5909. (c) Sasaki, S.; Hamada,
Y.; Shioiri, T. Tetrahedron Lett. 1999, 40, 3187.
(d) Andrus, M. B.; Soma Sekhar, B. B. V.; Turner, T. M.;
Meredith, E. L. Tetrahedron Lett. 2001, 42, 7197.
(12) Bull, S. D.; Davies, S. G.; Jones, S.; Sanganee, H. J. J. Chem.
Soc., Perkin Trans. 1 1999, 387.
(13) (a) Bach, J.; Bull, S. D.; Davies, S. G.; Nicholson, R. L.;
Sanganee, H. J.; Smith, A. D. Tetrahedron Lett. 1999, 40,
6677. (b) Bull, S. D.; Davies, S. G.; Nicholson, R. L.;
Sanganee, H. J.; Smith, A. D. Tetrahedron: Asymmetry
2000, 11, 3475.
(14) For instance see: (a) Evans, D. A.; Bartroli, J. Tetrahedron
Lett. 1982, 23, 807. (b) Evans, D. A.; Polniaszek, R. P.;
DeVries, K. M.; Guinn, D. E.; Mathre, D. J. J. Am. Chem.
Soc. 1991, 113, 7613. (c) Chakraborty, T. K.; Suresh, V. R.
Tetrahedron Lett. 1998, 39, 7775. (d) Brimble, M. A.;
Nairn, M. R.; Park, J. Org. Lett. 1999, 1, 1459. (e) An
alternative strategy involving conversion to the Weinreb
amide and subsequent reduction has also been employed,
see: Evans, D. A.; Miller, S. J.; Ennis, M. D. J. Org. Chem.
1993, 58, 471.
Acknowledgement
The authors wish to thank Astra–Zeneca for a studentship (R. L. N.)
and New College, Oxford for a Junior Research Fellowship (A. D.
S.).
References
(1) Danishefsky, S. J.; DeNinno, M. P. Angew. Chem., Int. Ed.
Engl. 1987, 26, 15.
(2) (a) Bednarski, M.; Danishefsky, S. J. Am. Chem. Soc. 1983,
105, 6968. (b) Danishefsky, S. J.; Larson, E.; Springer, J. P.
J. Am. Chem. Soc. 1985, 107, 1274. (c) Danishefsky, S. J.;
Pearson, W. H.; Segmuller, B. E. J. Am. Chem. Soc. 1985,
107, 1280. (d) Bednarski, M.; Danishefsky, S. J. Am. Chem.
Soc. 1986, 108, 7060. (e) Schaus, S. E.; Brånalt, J.;
Jacobsen, E. N. J. Org. Chem. 1998, 63, 403.
(3) (a) Harris, J. M.; Keränen, M. D.; Nguyen, H.; Young, V. G.;
O’Doherty, G. A. Carbohydr. Res. 2000, 328, 17.
(b) Henderson, I.; Sharpless, K. B.; Wong, C.-H. J. Am.
Chem. Soc. 1994, 116, 558. (c) Kobayashi, S.; Kawasuji, T.
Synlett 1993, 911.
(4) For a review see: (a) Gijsen, H. J. M.; Qiao, L.; Fitz, W.;
Wong, C.-H. Chem. Rev. 1996, 96, 443. (b) Hudlicky, T.;
Pitzer, K. K.; Stabile, M. R.; Thorpe, A. J.; Whited, G. M. J.
Org. Chem. 1996, 61, 4151. (c) Johnson, C. R.;
(15) The reduction of N-acyl thiaoxazolidinones to aldehydes has
previously been reported, see: (a) Chakraborty, T. K.;
Jayaprakash, S.; Lazman, P. Tetrahedron 2001, 57, 9461.
(b) Izawa, T.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1979,
52, 555. (c) Izawa, T.; Mukaiyama, T. Chem. Lett. 1977,
1443. (d) For an isolated example of the direct Red–Al
reduction of an N-acyl oxazolidinone to an aldehyde see:
Meyers, A. I.; Spohn, R. F.; Linderman, R. J. J. Org. Chem.
1985, 50, 3633.
(16) Experimental Procedure for Aldol Reactions: CF3SO3H (1.2
equiv) was added to BEt3 (1 M in hexanes, 1.2 equiv) at r.t.
then warmed to 40 °C for 10 minutes before cooling to 0 °C
and subsequent addition via cannula to a solution of N-acyl-
oxazolidin-2-one (1 equiv) in CH2Cl2. After 10 minutes, i-
Pr2NEt (1.4 equiv) was added and the reaction mixture
stirred for a further 20 minutes before cooling to –78 °C and
the addition of freshly distilled aldehyde (1.1 equiv). After
30 minutes the reaction mixture was warmed to 0 °C and
stirred for a further hour before the addition of MeOH–H2O2
(v/v, 1:1). The reaction mixture was extracted with CH2Cl2,
washed with brine, dried and concentrated in vacuo before
purification by flash column chromatography.
Golebiowski, A.; Steensma, D. H. J. Am. Chem. Soc. 1992,
114, 9414.
(5) (a) Takeuchi, M.; Tanguchi, T.; Ogasawara, K. Chirality
2000, 338. (b) Marshall, J. A.; Hinkle, K. W. J. Org. Chem.
1996, 61, 105. (c) Kobayashi, S.; Wakabayashi, T.; Yasuda,
M. J. Org. Chem. 1998, 63, 4868. (d) Evans, D. A.; Ng, H.
P. Tetrahedron Lett. 1993, 34, 2229.
(6) (a) Koo, S. Y.; Lee, A. W. M.; Masamune, S.; Reed, L. A. I.
I. I.; Sharpless, K. B.; Walker, F. J. Science 1983, 220, 949.
(b) Koo, S. Y.; Lee, A. W. M.; Masamune, S.; Reed, L. A.
III.; Sharpless, K. B.; Walker, F. J. Tetrahedron 1990, 46,
245.
(7) (a) Golec, J. M. C.; Jones, S. D. Tetrahedron Lett. 1993, 50,
8159. (b) Evans, D. A.; Miller, S. J.; Ennis, M. D.; Ornstein,
P. L. J. Org. Chem. 1992, 57, 1067.
(8) For leading examples of iterative aldol approaches to
polypropionate fragments on solid phase see: (a) Paterson,
I.; Donghi, M.; Gerlach, K. Angew. Chem. Int. Ed. 2000, 39,
3315. (b) Reggelin, M.; Brenig, V. Tetrahedron Lett. 1996,
38, 6851. (c) For solution phase synthesis see: Paterson, I.;
Scott, J. P. Tetrahedron Lett. 1997, 42, 7441. (d) Also see:
Paterson, I.; Scott, J. P. J. Chem. Soc., Perkin Trans. 1. 1999,
1003.
(9) (a) Crimmins, M. T.; Tabet, E. A. J. Am. Chem. Soc. 2000,
122, 5473. (b) Li, Z.; Wu, R.; Michalczyk, R.; Dunlap, R.
B.; Odom, J. D.; Silks, L. A. P. III J. Am. Chem. Soc. 2000,
122, 386. (c) Hunziker, D.; Wu, N.; Kenoshita, K.; Cane, D.
E.; Khosla, C. Tetrahedron Lett. 1999, 40, 635.
(17) Experimental Procedure for DIBALH Reduction: DIBALH
(1 M in hexanes, 2 equiv) was added to a stirred solution of
N-acyl-oxazolidin-2-one (1 equiv) in anhydrous CH2Cl2 at
–78 °C. After 30 minutes, the reaction mixture was
quenched with saturated aqueous NH4Cl solution and stirred
for a further 20 minutes. The resultant emulsion was filtered
through Celite®, dried and concentrated in vacuo before
purification by flash column chromatography.
(18) 1H NMR data for tetrose 8; H (400 MHz, CDCl3) 0.01, 0.04
[2 3 H, s, Si(CH3)2t-Bu], 0.86 [9 H, s, SiC(CH3)3], 3.53 [1
H, dd, J = 9.8 Hz, 4.9, C(4)HA], 3.61 [1 H, dd, J = 9.8 Hz,
5.6, C(4)HB], 3.88 [1 H, dd, J = 4.5 Hz, 1.3, C(2)H], 4.16–
4.19 [1 H, m, C(3)H], 4.48 [2 H, ABq, J = 12.2 Hz,
Synlett 2002, No. 10, 1637–1640 ISSN 0936-5214 © Thieme Stuttgart · New York