H.-L. Huang et al. / Tetrahedron Letters 43 (2002) 7983–7985
7985
nation. Synthesis of furanyl diene requires a long proce-
dure according to literature methods.3 The diene bears
a dioxolane group to control diastereoselectivity of
Diels–Alder reactions. This stereodirecting group is
readily removed using conventional method. This syn-
thetic approach provides a short synthesis of enantio-
pure tricyclic furan.
6. Liang, K.-W.; Li, W.-T.; Lee, G.-H.; Peng, S.-M.; Liu,
R.-S. J. Am. Chem. Soc. 1997, 119, 4404.
7. Li, W.-T.; Lai, F.-C.; Lee, G.-H.; Peng, S.-M.; Liu,
R.-S. J. Am. Chem. Soc. 1998, 120, 4520.
8. (a) Palomo, C.; Oiarbide, M.; Landa, A.; Esnal, A.;
Linden, A. J. Org. Chem. 2001, 66, 4180; (b) Inouye,
M.; Fujimoto, K.; Furusyo, M.; Nakazumi, H. J. Am.
Chem. Soc. 1999, 121, 1452.
9. Pei, C.-C.; Liu, R.-S. Org. Lett. 2001, 3, 1295.
10. Ohno, K.; Tsuji, J. J. Am. Chem. Soc. 1968, 90, 99.
11. Determination of the ee values of compounds of 16–18
is performed on a Merck Chiralsphere column (diiso-
propyl ether/hexane=1/15–1/5).
References
1. For representative examples, see: (a) Flegel, M.; Adam,
K.-L.; Becker, H. Phytochemistry 1999, 52, 1633; (b)
Finnegan, R. A.; Djerassi, C. J. Am. Chem. Soc. 1960,
82, 4342; (c) Astudillo, L.; Gonzalez, A.; Galindo, A.;
Mansilla, T. Tetrahedron Lett. 1997, 38, 6737; (d) Hijfte,
L. V.; Vandewalle, M. Tetrahedron 1984, 40, 4371; (e)
Carda, M.; Marco, J. A. Tetrahedron 1992, 48, 9789; (f)
Talwar, K. K.; Singh, I. P.; Kalsi, P. S. Phytochemistry
1992, 31, 336.
2. (a) Maji, S. T.; Mukhopadhyaya, S. K.; Mukherjee, D.;
Dutta, P. C. J. Chem. Soc., Perkin 1 1980, 2511; (b)
Medebielle, M. Tetrahedron Lett. 1996, 37, 5119; (c)
Backvall, J.-E.; Anderson, P. G. J. Am. Chem. Soc.
1992, 114, 6374; (d) Takacs, J. M.; Weidner, J. J.; New-
son, P. W.; Takacs, B. E.; Chidambaram, R.; Shoe-
maker, R. J. Org. Chem. 1995, 60, 3473; (e) Trost, B.
M.; King, S. A. J. Am. Chem. Soc. 1990, 121, 10842.
3. (a) Breitmaire, E.; Potthoff, B. Chem. Ber. 1986, 119,
3204; (b) Breitmaire, E.; Reffer, U. Synthesis 1989, 623;
(c) Cornwall, P.; Dell, C. P.; Knight, D. W. J. Chem.
Soc., Perkin Trans. 1 1993, 2395; (d) Arrayas, R. G.;
Liebeskind, L. S. J. Am. Chem. Soc. 2001, 123, 6185.
4. Review article of intramolecular Diels–Alder reaction,
see: Roush, W. R. In Comprehensive Organic Synthesis;
Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol.
5, p. 513.
12. Spectral data: Spectral data for compound 16: [h]=
1
−13.7 (c 1.0, CHCl3); H (CDCl3, 400 MHz): l 5.68 (br
s, 1H), 4.52 (m, 1H), 4.18 (m, 1H), 3.98 (m, 1H), 3.37 (t,
J=8.8 Hz, 1H), 3.02 (m, 1H), 2.70 (m, 1H), 2.55 (m,
1H), 2.03 (m, 1H); 13C NMR (CDCl3, 100 MHz): l
177.7, 174.8, 131.7, 117.3, 79.9, 73.7, 42.7, 38.3, 31.3,
22.9; MS (70 eV, m/e): 194 (M+). Anal. calcd for
C10H10O4: C, 61.85; H, 5.19; Found: C, 61.78; H, 5.17.
Compound 17: [h]=−15.2 (c 1.0, CHCl3); 1H (CDCl3,
400 MHz): l 5.80 (br s, 1H), 4.67 (m, 1H), 4.42 (t,
J=6.8 1 Hz, 1H), 3.74 (t, J=7.2 Hz, 1H), 3.53 (m, 1H),
3.18 (m, 1H), 2.79 (s, 1H), 2.63 (m, 1H), 2.34 (m, 1H),
2.10 (m, 1H); 13C NMR CDCl3, 100 MHz: l 178.7,
174.1, 137.3, 117.4, 79.0, 75.9, 43.0, 40.0, 32.2, 24.9; MS
(70 eV, m/e): 193 (M+). Anal. calcd for C10H11NO3: C,
62.17; H, 5.74; Found: C, 62.12; H, 5.79. Compound 18:
[h]=−23.7 (c 1.0, CHCl3); 1H (CDCl3, 400 MHz): l
7.17–7.48 (m, 5H), 5.78 (m, 1H), 4.65 (m, 1H), 4.50 (m,
1H), 3.72 (m, 1H), 3.66 (q, J=8.8 Hz, 1H), 3.52 (t,
J=7.2 Hz, 1H), 3.24 (m, 1H), 2.91 (m, 1H), 2.61 (m,
1H), 2.18 (m, 1H); 13C NMR (CDCl3, 100 MHz): l
179.0, 175.0, 137.9, 131.9, 128.3, 127.6, 126.6, 117.3,
79.0, 75.4, 42.4, 39.4, 32.2, 25.0; MS (70 eV, m/e): 269
(M+). Anal. calcd for C16H15NO3: C, 71.36; H, 5.61;
Found: C, 71.32; H, 5.60%.
5. Wu, W. L.; Yao, Z. J.; Li, Y. L.; Li, J. C.; Xia, Y.; Wu,
Y. L. J. Org. Chem. 1995, 60, 3257.