C O M M U N I C A T I O N S
and Hong Kong Research Grants Council. Croucher Foundation
is acknowledged for Senior Research Fellowships (to D.Y. and
Y.-D.W.). D.Y. thanks Bristol-Myers Squibb for the Unrestricted
Grants in Synthetic Organic Chemistry.
Supporting Information Available: Synthetic scheme and char-
acterization data of 1 and 2; 1H NMR studies of 1 and 2; 1H NMR and
ESI-MS spectra of mixtures of 2 and Ph4PCl; determination of the
association constants for 2‚Cl- and 2‚F- complexes; calculation
procedures and the calculated energies and coordinates of 3a and 3‚Cl-
complex (PDF). This material is available free of charge via the Internet
Figure 1. HF/6-31G* optimized lowest-energy conformation of model
cyclic hexapeptide 3.
References
(1) For recent reviews on foldamers, see: (a) Gellman, S. H. Acc. Chem.
Res. 1998, 31, 173-180. (b) Seebach, D.; Matthews, J. L. J. Chem. Soc.,
Chem. Commun. 1997, 2015-2022. (c) Cheng, R. P.; Gellman, S. H.;
DeGrado, W. F. Chem. ReV. 2001, 101, 3219-3232. (d) Hill, D. J.; Mio,
M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. ReV. 2001, 101,
3893-4011. (e) Cubberley, M. S.; Iverson, B. L. Curr. Opin. Chem. Biol.
2001, 5, 650-653.
(2) (a) Porter, E. A.; Wang, X. F.; Lee, H. S.; Weisblum, B.; Gellman, S. H.
Nature 2000, 404, 565-565. (b) Hamuro, Y.; Schneider, J. P.; Degrado,
W. F. J. Am. Chem. Soc. 1999, 121, 12200-12201. (c) Liu, D. H.;
DeGrado, W. F. J. Am. Chem. Soc. 2001, 123, 7553-7559. (d) Arvidsson,
P. I.; Frackenpohl, J.; Ryder, N. S.; Liechty, B.; Petersen, F.; Zimmermann,
H.; Camenisch, G. P.; Woessner, R.; Seebach, D. ChemBioChem 2001,
2, 771-773. For â-peptides that bind to human receptors, see: (e)
Gademann, K.; Kimmerlin, T.; Hoyer, D.; Seebach, D. J. Med. Chem.
2001, 44, 2460-2468. (f) Seebach, D.; Rueping, M.; Arvidsson, P. I.;
Kimmerlin, T.; Micuch, P.; Noti, C.; Langenegger, D.; Hoyer, D. HelV.
Chim. Acta 2001, 84, 3503-3510. (g) Werder, M.; Hauser, H.; Abele,
S.; Seebach, D. HelV. Chim. Acta 1999, 82, 1774-1783.
(3) (a) Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee, D. E.;
Khazanovich, N. Nature 1993, 366, 324-327. (b) Ghadiri, M. R.; Granja,
J. R.; Buehler, L. K. Nature 1994, 369, 301-304. (c) Fernandez-Lopez,
S.; Kim, H.-S.; Choi, E. C.; Delgado, M.; Granja, J. R.; Khasanov, A.;
Kraehenbuehl, K.; Long, G.; Weinberger, D. A.; Wilcoxen, K. M.; Ghadiri,
M. R. Nature 2001, 412, 452-455. (d) Clark, T. D.; Buehler, L. K.;
Ghadiri, M. R. J. Am. Chem. Soc. 1998, 120, 651-656. (e) Seebach, D.;
Matthews, J. L.; Meden, A.; Wessels, T.; Baerlocher, C.; McCusker, L.
B. HelV. Chim. Acta 1997, 80, 173-182. For a recent review, see: (f)
Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Angew. Chem.,
Int. Ed. 2001, 40, 988-1011.
Figure 2. The amide NH region of overlaid 1H NMR spectra of free 2
and the 1:1 mixture of 2 with (n-Bu)4NF, Ph4PCl, and Ph4PBr, respectively
(3 mM in CDCl3 at -30 °C).
Figure 3. The HF/6-31G* optimized lowest-energy conformation of 3‚
Cl-: top view (left) and side view (right).
The solution conformation of 2‚Cl- complex was then investi-
gated using 1H NMR techniques. In CD2Cl2, only one set of sharp
peaks was found in the 1H NMR spectrum of a 1:2 mixture of 2 (6
1
mM) and Ph4PCl at room temperature.6 The H NMR spectrum
also indicated that 2‚Cl- complex still adopted a C3 symmetrical
conformation. The HMBC spectrum revealed that amide NHs of
OLeu and OPhe switched their positions in the 1H NMR spectrum
after 2 was complexed with Cl-. The ROESY spectrum exhibited
a different NOE pattern (medium NOEs between NHi and CRHi
and also medium NOEs between CRHi and NHi+1) as compared
with that of free 2 under the same condition, indicating that the
conformation of 2‚Cl- was quite different from the bracelet-like
conformation.
(4) (a) Yang, D.; Ng, F.-F.; Li, Z.-J.; Wu, Y.-D.; Chan, K. W. K.; Wang,
D.-P. J. Am. Chem. Soc. 1996, 118, 9794-9795. (b) Yang, D.; Li, B.;
Ng, F.-F.; Yan, Y.-L.; Qu, J.; Wu, Y.-D. J. Org. Chem. 2001, 66, 7303-
7312.
(5) (a) Yang, D.; Qu, J.; Li, B.; Ng, F.-F.; Wang, X.-C.; Cheung, K.-K.; Wang,
D.-P.; Wu, Y.-D. J. Am. Chem. Soc. 1999, 121, 589-590. (b) Wu, Y.-
D.; Wang, D.-P.; Chan, K. W. K.; Yang, D. J. Am. Chem. Soc. 1999,
121, 11189-11196. (c) Peter, C.; Daura, X.; Van Gunsteren, W. F. J.
Am. Chem. Soc. 2000, 122, 7461-7466.
(6) See the Supporting Information.
(7) Coste, J.; Le-Nguyen, D.; Castro, B. Tetrahedron Lett. 1990, 31, 205-
The HF/6-31G* optimized6 lowest-energy conformation of 3‚Cl-
complex is shown in Figure 3. Upon Cl- ion binding, the original
bracelet-like conformation 3a turns into a rather flat conformation
with all of the amide NHs pointing inward. The Cl- ion at the
center of 3 is hydrogen bonded to six NHs simultaneously. The
calculated H‚‚‚Cl distance and N-Η‚‚‚Cl angle are 2.40 Å and
154°, respectively. The distance between NHi and CRHi is 3.19 Å,
whereas that between CRHi and NHi+1 is 3.40 Å, matching well
with the observed NOEs for 2‚Cl- complex in solution.
In conclusion, we found that cyclic hexapeptide 2 consisting of
alternating D,L-R-aminoxy acids adopted the highly symmetrical
bracelet-like conformation, which is quite different from those of
cyclic D,L-R-peptides and â3-peptides but similar to that of
valinomycin. In contrast to valinomycin that binds cations selec-
tively, 2 showed affinities for halides with high selectivity for Cl-
ion in nonpolar solvents. The discovery of a novel chloride receptor
may open up new opportunities in the molecular design of selective
chloride sensors and transporters.
208.
(8) (a) Ovchinnikov, Yu. A.; Ivanov, V. T. Tetrahedron 1974, 30, 1871-
1890. (b) Neupert-Laves, K.; Dobler, M. HelV. Chim. Acta 1975, 58, 432-
442.
-
(9) No binding was detected for other anions such as HCO3-, HSO4-, H2PO4
,
HPO42-, NO2-, and N3-. 2 showed weak affinity to NO3 (Ka ) 5 M-1
-
at 298 K).
(10) For reviews on anion receptors, see: (a) Sessler, J. L.; Davis, J. M. Acc.
Chem. Res. 2001, 34, 989-997. (b) Beer, P. D.; Gale, P. A. Angew. Chem.,
Int. Ed. 2001, 40, 486-516. (c) Snowden, T. S.; Anslyn, E. V. Curr.
Opin. Chem. Biol. 1999, 3, 740-746.
(11) For recent examples of cyclic receptors for anions, see: (a) Bucher, C.;
Zimmerman, R. S.; Lynch, V.; Kral, V.; Sessler, J. L. J. Am. Chem. Soc.
2001, 123, 2099-2100. (b) Bucher, C.; Zimmerman, R. S.; Lynch, V.;
Sessler, J. L. J. Am. Chem. Soc. 2001, 123, 9716-9717. (c) Choi, K.;
Hamilton, A. D. J. Am. Chem. Soc. 2001, 123, 2456-2457. (d) Kubik,
S.; Goddard, R.; Kirchner, R.; Nolting, D.; Seidel, J. Angew. Chem., Int.
Ed. 2001, 40, 2648-2651. (e) Kubik, S.; Goddard, R. Proc. Natl. Acad.
Sci. U.S.A. 2002, 99, 5127-5132. (f) Camiolo, S.; Gale, P. A. Chem.
Commun. 2000, 1129-1130.
(12) Our conformational search revealed that 2 was quite rigid with only a
limited number of conformations. The anion-binding conformation was
found to be the second most stable one, whereas the cation-binding
conformation was much higher in energy.
(13) Cotton, F. A.; Wilkinson, G. AdVanced Inorganic Chemistry, 5th ed.; John
Wiley & Sons: New York, 1988; p 545.
Acknowledgment. This work was supported by The University
of Hong Kong, Hong Kong University of Science and Technology,
JA027073Y
9
J. AM. CHEM. SOC. VOL. 124, NO. 42, 2002 12411