J. Chun et al. / Tetrahedron Letters 43 (2002) 8043–8045
8045
methyl)-1,3-dioxolanes via the AD reaction of allylic
chlorides and subsequent protection of the diol has limi-
tations, e.g. allylic chlorides are easily hydrolyzed and
undergo the AD reaction with lower yield and lower % ee
than a,b-unsaturated esters.12.
19. A review of the Mitsunobu reaction: Hughes, D. L. Org.
React. 1992, 42, 335–656.
20. The % ee was determined by 1H and 19F NMR spec-
troscopy of the Mosher ester obtained by reaction of the
alcohol
with
(S)-(+)-a-methoxy-a-(trifluoromethyl)-
phenylacetic acid (MTPA) chloride in the presence of
DMAP: Guivisdalsky, P. N.; Bittman, R. J. Org. Chem.
1989, 54, 4637–4642.
8. Nakamura, S.; Kusuda, S.; Kawamura, K.; Toru, T. J.
Org. Chem. 2002, 67, 640–647.
9. Recent examples: (a) Frantz, D. E.; Fa¨ssler, R.;
Tomooka, C. S.; Carreira, E. M. Acc. Chem. Res. 2000,
33, 373–381; (b) Jiang, B.; Chen, Z.; Xiong, W. J. Chem.
Soc., Chem. Commun. 2002, 1524–1525.
10. (a) Ishihara, K.; Mori, A.; Arai, I.; Yamamoto, H.
Tetrahedron Lett. 1986, 27, 983–986; (b) Mori, A.; Ishi-
hara, K.; Arai, I.; Yamamoto, H. Tetrahedron 1987, 43,
755–764.
11. Coval, S.; Saucy, G.; Wood, R. D.; Desai, R. C.;
Gunawardane, G. P.; Longely, R. E.; Burres, N. US
Patent 5166379 (1992); Chem. Abstr. 1993, 118, 124061v.
12. Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B.
Chem. Rev. 1994, 94, 2483–2547.
21. Compound 1a: mp 32.5–33.0°C, [h]2D5 +76.6 (c 1.0,
CHCl3); 1H NMR (400 MHz, CDCl3) l 0.88 (t, 3H,
J=6.4 Hz), 1.10–1.60 (m, 26H), 2.03 (s, 1H), 2.11 (m,
2H), 2.49 (d, 1H, J=2.2 Hz), 5.14 (m, 1H), 5.56 (m, 2H);
13C NMR (100 MHz, CDCl3) l 14.1, 22.7, 27.6, 29.2,
29.3, 29.4, 29.5, 29.6, 27.7, 32.0, 58.0, 72.9, 84.1, 128.7,
134.1; HR-MS [DEI, M+] m/z calcd for C20H36O
292.2766, found 292.2761. Compound 1b: [h]2D5 −28.0 (c
1.0, CHCl3) (lit.8 [h]D21 −26.7 (c 1.5, CHCl3); Fluka cata-
log: [h]2D0 −28 (c 3.2, CHCl3)). Compound 1c: mp 40.0–
1
41.0°C; [h]2D5 +2.60 (c 1.0, CHCl3); H NMR (400 MHz,
CDCl3) l 0.88 (t, 3H, J=6.6 Hz), 1.20–1.60 (m, 20H),
1.72 (m, 2H), 2.41 (br s, 1H), 2.44 (d, 1H, J=3.7 Hz),
4.36 (m, 1H); 13C NMR (100 MHz, CDCl3) l 14.1, 22.7,
25.1, 29.3, 29.5, 29.62, 29.69, 29.7, 32.0, 37.6, 62.3, 72.8,
85.1; HR-MS [DCI, MH+] m/z calcd for C15H29O
225.2218, found 225.2211. Compound 1d: mp 46.0–
13. For a review of the HWE reaction, see: Maryanoff, B. E.
Chem. Rev. 1989, 89, 863–927.
14. He, L.; Byun, H.-S.; Bittman, R. J. Org. Chem. 2000, 65,
7627–7633.
15. Bonini, C.; Federici, C.; Rossi, L.; Righi, G. J. Org.
Chem. 1995, 60, 4803–4812.
1
47.0°C; [h]2D5 +6.96 (c 2.3, CHCl3); H NMR (400 MHz,
CDCl3) l 0.88 (t, 3H, J=6.6 Hz), 1.20–1.40 (m, 26H),
1.57 (m, 2H), 2.44 (d, 1H, J=2.2 Hz), 2.57 (d, 1H, J=4.8
Hz), 3.52 (m, 3H), 3.60 (m, 1H), 4.53 (m, 1H); 13C NMR
(100 MHz, CDCl3) l 14.1, 22.7, 26.0, 29.3, 29.45, 29.53,
16. He, L.; Byun, H.-S.; Smith, J.; Wilschut, J.; Bittman, R.
J. Am. Chem. Soc. 1999, 121, 3897–3903.
17. (a) Sharma, A.; Chattopadhyay, S. Tetrahedron: Asym-
metry 1998, 9, 2635–2639; (b) Lu, W.; Zheng, G.; Cai, J.
Tetrahedron 1999, 55, 4649–4654.
18. (a) Gunaseketa, S. P.; Faircolth, G. T. J. Org. Chem.
1990, 55, 6223–6225; (b) Hallock, Y. F.; Cardellina, J. H.,
II; Balaschak, M. S.; Alexander, M. R.; Prather, T. R.;
Shoemaker, R. H.; Boyd, M. R. J. Nat. Prod. 1995, 58,
1801–1807.
29.60, 29.62, 29.69, 29.7, 31.9, 61.4, 71.8, 73.6, 74.0, 81.7;
+
HR-MS [DCI, MNH4
] m/z calcd for C20H42NO2
328.3216, found 328.3216. Compound 1e: mp 50.0–51.0°C
(lit.5a mp 52–53°C); [h]D25 +28.6 (c 1.0, CHCl3). The NMR
spectra of 1b and 1e were in full accordance with the
literature data.