Sep-Oct 2002
Synthesis and Structural Characterisation of 4H-1,3-Benzothiazine Derivatives
931
(2)-3336750.
[1] E. Vinkler, J. Szabó and I. Varga Acta Pharm. Hung. 36,
155 (1966).
[2] M. G. Vigorita, M. Basile and A. Chimirri Atti Soc.
Peloritana Sci. Fis. Mat. Natur.16, 293 (1970).
[3] Fr. Demande Patent no. FR 2047871 B1 19730316; Chem.
Abstr. 76, 3878 (1972).
[4] K. I. Lopatina, G. N. Artemenko, T. V. Sokolova, R. M.
Salimov, Yu. I. Vikhlyaev and V. A. Zagorevskii Khim.-Farm. Zh. 12,
65 (1978).
[5] K. I. Lopatina, G. N. Artemenko, T. V. Sokolova, N. A.
Avdulo and V. A. Zagorevskii Khim.-Farm. Zh., 16, 173 (1982).
[6] K. I. Lopatina, G. N. Artemenko, T. V. Sokolova, V. A.
Zagorevskii and Yu. I. Vikhlyaev Patent no. URXXAF SU 770029,
A1 19861215; Chem. Abstr.107, 217641 (1987).
[7] A. Garofalo, G. Campiani, I. Fiorini and V. Nacci Il
Farmaco, 48, 275 (1993).
eronuclear one-bond correlation experiments were acquired using
carbon detected CH-shift correlation with partial homonuclear
decoupling in the f1 dimension. Long-range heteronuclear corre-
lation experiments included either carbon detected COLOC or
proton detected HMBC with gradient selection. One-bond cou-
pling constant was 145 Hz and the long-range coupling constants
were 5- 12 Hz in proton-carbon correlation spectra. 2D homonu-
clear H,H-correlation experiments were acquired using phase-sen-
sitive double quantum filtered COSY. The spectral widths of 2D
spectra were optimised from 1D spectra.
Mass Spectra.
The electron ionisation mass spectra (cf. Table 5 and Scheme
3) of 2a-g, 3b, 4e,g and 5a,b were recorded at 70 eV on an MM
7070E mass spectrometer (VG Analytical Ltd, Manchester, UK)
equipped with an OPUS data system. The samples were intro-
duced into the mass spectrometer through the solid-inlet system
at ambient temperature (~323 K) for low-resolution (R = 1000),
accurate mass (peak matching method in HR mode) and
metastable (B/E) measurements.
[8] J. Szabó, I. Varga and E. Vinkler Acta Chim. Acad. Sci.
Hung., 71, 363 (1972).
[9] J. Szabó, I. Varga, E. Vinkler and E. Barthos Acta Chim.
Acad. Sci. Hung., 70, 71 (1971) and 72, 213 (1972).
[10] V. A. Zagorevskii, K. I. Lopatina, T. V. Sokolova and S.
M. Lyuev Khim. Geterotsikl. Soedin., 1437 (1974).
[11] J. Szabó, L. Fodor, I. Varga, E. Vinkler and P. Sohár Acta
Chim. Acad. Sci. Hung., 92, 317 (1977).
[12] L. Fodor, J. Szabó and P. Sohár Tetrahedron, 37, 963
(1981).
[13] J. Szabó, L. Fodor, E. Szu´´cs, G. Bernáth and P. Sohár
Pharmazie, 39, 426 (1984).
Acknowledgements.
We express our thanks to the Hungarian Research Foundation
(OTKA) for grants OTKA T030647 and T034422, to the
Hungarian Ministry of Health for grant ETT 556/2000, and to the
Academy of Finland (Grant: no 4284).
[14] P. Sohár, L. Fodor, J. Szabó and G. Bernáth Tetrahedron,
40, 4387 (1984).
REFERENCES AND NOTES
[15] J. Szabó, E. Bani-Akoto, Gy. Dombi, G. Günther, G.
Bernáth and L. Fodor J. Heterocyclic Chem., 29, 1321 (1992).
[16] I. P. Hammett Advances in Linear Free Energy
Relationships, Plenum Publishing Company Ltd, New York, 1972.
*
Correspondence to: Prof. Kalevi Pihlaja, Department of
Chemistry, University of Turku, Vatselankatu 2, FIN-20014 Turku,
Finland, email: kpihlaja@utu.fi, phone: 358-(2)-3336767, fax:358-