C O M M U N I C A T I O N S
Scheme 2
to investigate this and related reactivity, in particular that of cyclic
enolates in Michael additions to R,â-unsaturated carbonyl com-
pounds.
Acknowledgment. Financial support from DGESIC (Project
BQU2000-1169) is gratefully acknowledged. C.M.M. thanks the
Direccio´n General de Ensen˜anza Superior for a PFPI studentship.
Supporting Information Available: Synthetic procedures and
spectroscopic and analytical data for compounds 1-7 and X-ray
crystallographic data (cif) for 1. This material is available free of charge
via the Internet at http//pubs.acs.org.
References
(1) (a) Paterson, I. In ComprehensiVe Organic Synthesis, Vol. 2; Trost, B.
M., Fleming, I., Heathcock, C. H., Eds.; Pergamon Press: Oxford, 1991;
pp 301-319. (b) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1997,
119, 12382-12383. (c) Palucki, M.; Buckwald, S. L. J. Am. Chem. Soc.
1997, 119, 11108-11109. (d) Satoh, T.; Kawamura, Y.; Miura, M.;
Nomura, M. Angew. Chem., Int. Ed. Engl. 1997, 36, 1740-1742. (e)
Ahman, J.; Wolfe, J. P.; Troutman, M. V.; Palucki, M.; Buchwald, S. L.
J. Am. Chem. Soc. 1998, 120, 1918-1919. (f) Fuji, A.; Hagiwara, E.;
Sodeoka, M. J. Am. Chem. Soc. 1999, 12, 5450-5458. (g) Fujimura, O.
J. Am. Chem. Soc. 1998, 120, 10032-10039. (h) Kru¨ger, J.; Carreira, E.
M. J. Am. Chem. Soc. 1998, 120, 837-838. (i) Pagenkopf, B. L.; Kru¨ger,
J.; Stojanovic, A.; Carreira, E. M. Angew. Chem., Int. Ed. 1998, 37, 3124-
3126.
substituted enolate ligand. For instance, they display a singlet
resonance in their H NMR spectra (δ 5.48, 4; 4.73, 5) which is
1
assigned to an olefinic methyne proton. The corresponding carbon
atom resonates at 97.4 and 97.3 ppm for 4 and 5, respectively (1JCH
1
ca. 140 Hz). The hydroxyl group can be detected both in the H
NMR (4, 6.91; 5, 5.77 ppm) and in the IR spectra (ca. 3200 cm-1).
The two products display low thermal stability. This has prevented
us from gathering good analytic data for 5, but both 4 and 5 are
quantitatively carbonylated to the stable lactones 6 and 7, which
have been isolated and characterized. It is noteworthy that
compounds 4-7 are selectively obtained as a single isomer that
displays a Z double-bond substitution pattern. This is unambiguously
established from their 2D NOESY spectra which exhibit clear NOE
cross-peaks between the olefin proton and the H 5′ aromatic
resonance. Although 4 and 5 retain an enolate functionality, they
do not react further with aldehydes. As the presence of substituents
on the double bond is not expected to decrease the nucleophilic
character of the enolate, we assume that this lack of reactivity is
due to steric effects.
(2) (a) Culkin, D. A.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 5816-
5817. (b) Slough, G. A.; Bergman, R. G.; Heathcock, C. H. J. Am. Chem.
Soc. 1989, 111, 938-949. (c) Slough, G. A.; Hayashi, R.; Ashbaugh, J.
R.; Shamblin, S. L.; Aukamp, A. M. Organometallics 1994, 13, 890-
898.
(3) (a) Veya, P.; Cozzi, P. G.; Floriani, C.; Rotzinger, F. P.; Chiesi-Villa, A.;
Rizzoli, C. Organometallics 1995, 14, 4101-4108. (b) Veya, P.; Floriani,
C.; Chiesi-Villa, A.; Rizzoli, C. Organometallics 1994, 13, 208-213. (c)
Veya, P.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. Organometallics 1993,
12, 4892-4898. (d) Cozzi, P. G.; Veya, P.; Floriani, C.; Rotzinger, F. P.;
Chiesi-Villa, A.; Rizzoli, C. Organometallics 1995, 14, 4092-4100. (e)
Evans, D. A.; McGee, L. R. Tetrahedron Lett. 1980, 21, 3975-3978. (f)
Yamamoto, Y.; Maruyama, K. Tetrahedron Lett. 1980, 21, 4607-4610.
(g) Manriquez, J.; Fagan, P. J.; Marks, T. J. J. Am. Chem. Soc. 1978,
100, 7112-7114. (h) Sonnenberger, D. C.; Mintz, E. A.; Marks, T. J. J.
Am. Chem. Soc. 1984, 106, 3484-3491. (i) Mukaiyama, T.; Banno, K.;
Narasaka, K. J. J. Am. Chem. Soc. 1974, 96, 7503-7509. (j) Stille, J. R.;
Grubbs, R. H. J. Am. Chem. Soc. 1983, 105, 1664-1665. (k) Curtis, M.
D.; Thanedar, S.; Butler, W. M. Organometallics 1984, 3, 1855-1859.
To compare the reactivity of 1 and 2 toward aldehydes, ca. 2:1
mixtures of 1 and 2 have been reacted, at room temperature, with
PhC(O)H and MeC(O)H. Monitoring these chemical changes by
31P{1H} NMR spectroscopy over a period of 24 h shows full
consumption of 1, whereas 2 remains unaltered. This result evinces
that under the above conditions only the O-bound enolate has
enough nucleophilic character to add to aldehydes, while the
C-bound enolate lacks this reactivity.
One final aspect of the reactivity of 1 which is worthy of note
concerns the nature of the aldehyde reaction products 4 and 5. It is
widely accepted that in aldol reactions induced by transition metal
compounds, aldehyde coordination precedes the C-C bond-forming
step.2b,c,3a-f As the metallacyclic nature of enolate 1 would impose
considerable strain to achieve the C-C bond-making transition state,
its reactions proceed otherwise. Hence the products 4 and 5 are
not classical aldolates but instead new enolate derivatives that may
result from aldehyde attack by the nucleophilic enolate carbon,
followed by a proton shift (rather than Ni2+ shift) in the resulting
dipolar intermediate 3 of Scheme 2. Another consequence of the
cyclic structure of 1 is its ability to react with enolizable carbonyl
compounds, a reaction that is often hampered by acid-base
exchange of the added reagent and the coordinated enolate
ligand.2b,7b,10
(4) (a) Hartwig, J. F.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc.
1990, 112, 5670-5671. (b) Hartwig, J. F.; Bergman, R. G.; Andersen, R.
A. Organometallics 1991, 10, 3344-3362. (c) Hartwig, J. F.; Bergman,
R. G.; Andersen, R. A. Organometallics 1991, 10, 3326-3344.
(5) (a) Albe´niz, A. C.; Catalina, N. M.; Espinet, P.; Redo´n, R. Organometallics
1999, 18, 5571-5576. (b) Vicente, J.; Abad, J. A.; Bergs, R.; Jones, P.
G.; Bautista, D. J. Chem. Soc., Dalton Trans. 1995, 3093-3095. (c)
Vicente, J.; Arcas, A.; Ferna´ndez-Herna´ndez, J. M.; Bautista, D. Organo-
metallics 2001, 20, 2767-2774. (d) Veya, P.; Floriani, C.; Chiesi-Villa,
A.; Rizzoli, C. Organometallics 1993, 12, 4899-4907. (e) Henderson,
W.; Fawcett, J.; Kemitt, R. D. W.; McKenna, P.; Russell, R. R. Polyhedron
1997, 16, 2475-2481. (f) Falvello, L. R.; Garde, R. Miqueleiz, E. M.;
Tomas, M.; Urriolabeitia, J. P. Inorg. Chim. Acta 1997, 297-302. (g)
Wanat, R. A.; Collum, D. B. Organometallics 1986, 5, 120-127. (h)
Green, M.; Howard, J. A. K.; Mitrprapachon, P.; Pfeffer, M.; Spencer, J.
L.; Woodward, P. J. Chem. Soc., Dalton Trans. 1979, 306-314. (i)
Russell, D. R.; Tucker, P. A. J. Chem. Soc., Dalton Trans. 1975, 2222-
2225. (j) Bennett, M. A.; Robertson, G. B.; Whimp, P. O.; Yoshida, T. J.
Am. Chem. Soc. 1973, 95, 3028-3030.
(6) Stack, J. G.; Doney, J. J.; Bergman, R. G.; Heathcock, C. H. Organo-
metallics 1990, 9, 453-466.
(7) (a) Burkhardt, E. R.; Doney, J. J.; Bergman, R. G.; Heathcock, C. H. J.
Am. Chem. Soc. 1987, 109, 2022-2039. (b) Burkhardt, R. R.; Bergman,
R. G.; Heathcock, C. H. Organometallics 1990, 9, 30-44.
(8) This compound is prepared by reaction of 2-chloroacetophenone with
Ni(dippe)(cod). Full details on synthetic procedure and spectroscopic data
will be published elsewhere.
In summary, we have shown that the metallacyclic oxygen-bound
nickel enolate 1 can be prepared in a straightforward manner and
can be thermally isomerized to the corresponding C-bound enolate.
Both tautomers display different reactivity, with only the former
being capable of undergoing aldol additions to enolizable and
nonenolizable aldehydes. Research in our laboratories continues
(9) (a) Amarasinghe, K. K. D.; Chowdhury, S. K.; Heeg, M. J.; Montgomery,
J. Organometallics 2001, 20, 370-372. (b) Mindiola, D. J.; Hillhouse,
G. L. J. Am. Chem. Soc. 2002, 124, 9976.
(10) Sun, C.; Tu, A.; Slough, G. J. Organomet. Chem. 1999, 582, 235.
JA028711F
9
J. AM. CHEM. SOC. VOL. 125, NO. 6, 2003 1483