C O M M U N I C A T I O N S
Table 1. Catalytic Synthesis of 1aa
illustration of this feature, we have used this catalytic Mu¨nchnone
synthesis, followed by the addition of methanol, to design a new
one-pot, four-component coupling route to diprotected R-amino acid
derivatives (eq 2). R-Aryl amino acids have been demonstrated to
be of utility in antimicrobial agents and enzyme inhibitors.15 As
shown in Table 2, diversely substituted amino acid derivatives can
be prepared by modification of the starting imine and acid chloride.
In addition to its simplicity, this transformation also provides what
is to our knowledge the first example of the catalytic construction
of R-amino acids from imines and carbon monoxide.
In summary, this report has described the development of the
first catalytic synthesis of Mu¨nchnones, providing direct access to
this general class of compounds from basic building blocks.
Experiments directed toward the development of multicomponent
catalytic syntheses of other peptidic and/or heterocyclic products
based on 1 are currently underway.
#
[CO]
Pd catalyst
base
additive
%1a (%2)b
1
2
3
4
5
6
7
8
1 atm
1 atm
1 atm
4 atm
4 atm
4 atm
4 atm
4 atm
Pd2(dba)3‚CHCl3
Pd2(dba)3‚CHCl3
Pd2(dba)3‚CHCl3
Pd2(dba)3‚CHCl3
Pd2(dba)3‚CHCl3
Pd2(dba)3‚CHCl3
Pd2(dba)3‚CHCl3
4a
NEt(iPr)2
bipy, 5%
bipy, 5%
5% (-)c
- (82%)c
10%
13%
30%
50%
69%
83%
NEt(iPr)2
NEt(iPr)2
NEt(iPr)2
NEt(iPr)2
NEt(iPr)2
NEt(iPr)2
LiCl
LiBr
Bu4NBr
Bu4NBr
a 0.48 mmol of imine and additive, 0.67 mmol of acid chloride, 0.74
mmol of base, and 5 mol % catalyst for 24-30 h at 55 °C. b NMR yield.
c 4 days.
Table 2. Scope of Palladium-Catalyzed Mu¨nchnone Synthesisa
Acknowledgment. We thank NSERC and FCAR for their
financial support. R.D. thanks McGill and NSERC for postgraduate
fellowships.
Supporting Information Available: Synthesis details on 1, 4, and
5 (PDF). This material is available free of charge via the Internet at
References
(1) (a)Gingrich, H. L.; Baum, J. S. In Oxazoles; Turchi, I. J., Ed.; Wiley:
New York, 1986; Vol. 45, p 731. (b) Potts, K. T. In 1,3-Dipolar
Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984; Vol.
2, p 1.
(2) (a) Keating, T. A.; Armstrong, R. W. J. Am. Chem. Soc. 1996, 118, 2574.
(b) Santiago, B.; Dalton, C. R.; Huber, E. W.; Kane, J. M. J. Org. Chem.
1995, 60, 4947. (c) Bilodeau, M. T.; Cunningham, A. M. J. Org. Chem.
1998, 63, 2800. (d) Consonni, R.; Dalla Croce, P.; Ferraccioli, R.; La
Rosa, C. J. Chem. Res., Synop. 1991, 7, 188. (e) Huisgen, R.; Gotthardt,
H.; Bayer, H. O. Chem. Ber. 1970, 103, 2368. (f) Nayyar, N. K.;
Hutchison, D. R.; Martinelli, M. J. J. Org. Chem. 1997, 62, 982.
(3) (a) Bayer, H. O.; Huisgen, R.; Knorr, R.; Schaefer, F. C. Chem. Ber. 1970,
103, 2581. (b) Funke, E.; Huisgen, R. Chem. Ber. 1971, 104, 3222.
(4) (a) Merlic, C. A.; Baur, A.; Aldrich, C. C. J. Am. Chem. Soc. 2000, 122,
7398. (b) Alper, H.; Tanaka, M. J. Am. Chem. Soc. 1979, 101, 4245.
(5) For chromium-ketene complexes: (a) Hegedus, L. S. Acc. Chem. Res.
1995, 28, 299. (b) Hegedus, L. S. Tetrahedron 1997, 53, 4105.
(6) For examples of related carbonylative cyclizations: (a) Colquhoun, H.;
Thompson, D. J.; Twigg, M. V. Carbonylation; Plenum Press: New York,
1991. (b) Khumtaveeporn, K.; Alper, H. Acc. Chem. Res. 1995, 28, 414.
(c) Tanaka, H.; Abdul Hai, A. K. M.; Sadakane, M.; Okumoto, H.; Torii,
S. J. Org. Chem. 1994, 59, 3040. (d) Cho, C. S.; Jiang, L. H.; Shim, S.
C. Synth. Commun. 1999, 29, 2695. (e) Van den Hoven, B. G.; Alper, H.
J. Am. Chem. Soc. 2001, 123, 10214. (f) Mahadevan, V.; Getzler, Y.;
Coates, G. W. Angew. Chem., Int. Ed. 2002, 41, 2781. (g) Chatani, N.;
Morimoto, T.; Fukumoto, Y.; Murai, S. J. Am. Chem. Soc. 1998, 120,
5335. (h) Chatani, N.; Kamitani, A.; Murai, S. J. Org. Chem. 2002, 67,
7014.
a Analogous to Table 1, # 8.13 b NMR. c Pd2(dba)3‚CHCl3 cat. d 96 h.
A useful feature of this catalytic reaction is the simplicity of the
three separate building blocks, which are either commercially
available (CO) or easily prepared (imines and acid chlorides). As
such, this chemistry can be generalized to prepare a range of
Mu¨nchnones, many of which have not been previously reported.
Notably, functionalities such as aryl-halides, esters, ethers, and
thioethers are tolerant to the catalysis conditions (Table 2), and
both alkyl and aryl acid chloride and N-substituted imines can be
employed. However, C-alkyl substituted imines do not yield
Mu¨nchnones under these conditions. This is likely related to the
established lower stability of these products1,14 and may be
addressable in the future with the use of in situ traps.
(7) (a) Dghaym, R. D.; Dhawan, R.; Arndtsen, B. A. Angew. Chem., Int. Ed.
2001, 40, 3228. (b) Dghaym, R. D.; Yaccato, K. J.; Arndtsen, B. A.
Organometallics 1998, 17, 4. (c) Lafrance, D.; Davis, J. L.; Dhawan, R.;
Arndtsen, B. A. Organometallics 2001, 20, 1128.
(8) Kacker, S.; Kim, J. S.; Sen, A. Angew. Chem., Int. Ed. 1998, 37, 1251.
(9) This mechanism is similar to those postulated for amidocarbonylation:
(a) Beller, M.; Eckert, M.; Vollmuller, F.; Bogdanovic, S.; Geissler, H.
Angew. Chem., Int. Ed. Engl. 1997, 36, 1494. (b) Beller, M.; Eckert, M.
Angew. Chem., Int. Ed. 2000, 39, 1010.
(10) Control reactions show 1a decomposes in the presence of Pd2dba3‚CHCl3.
(11) Compound 2 is not observed in these reactions, nor are there any major
(i.e., >5% yield) identifiable products other than 1.
(12) (a) Beletskaya, I. P.; Cheprakov, A. V. Chem. ReV. 2000, 100, 3009. (b)
Jeffery, T. Tetrahedron 1996, 52, 10113.
(13) See the Supporting Information for the synthesis of 1, 4, and 5.
(14) Side reactions of these N-acyl iminium salts may also inhibit 1 formation;
enamides are observed in these reactions in ca. 30% yield.
Considering the wide scope of products available from 1 and 1′,
this procedure should prove useful in the design of new catalytic
syntheses for a range of Mu¨nchnone-based targets. As a preliminary
(15) Williams, R. M.; Hendrix, J. A. Chem. ReV. 1992, 92, 889.
JA027474D
9
J. AM. CHEM. SOC. VOL. 125, NO. 6, 2003 1475