8784
R. Priefer et al. / Tetrahedron Letters 43 (2002) 8781–8784
When the photolysis was performed in an inert atmo-
sphere, slower homolytic SꢀS bond cleavage should
take place to form 12, which could lose sulfur to form
the alkoxy radical 13. This might explain why the only
product that we observed in this experiment was cubyl-
carbinol (8). Currently, mechanistic studies are under
way on this class of compounds to deduce their precise
mode of fragmentation.
Tardif, S. L.; Williams, C. R.; Harpp, D. N. J. Am.
Chem. Soc. 1995, 117, 9067.
3. Thompson, Q. E.; Crutchfield, M. M.; Dietrich, M. W.;
Pierron, E. J. Org. Chem. 1965, 30, 2692.
4. (a) Priefer, R.; Lee, Y. J.; Barrios, F.; Wosnick, J. H.;
Lebuis, A.-M.; Farrell, P. G.; Harpp, D. N.; Sun, A.;
Wu, S.; Snyder, J. P. J. Am. Chem. Soc. 2002, 124, 5626;
(b) Fraser, R. R.; Boussard, G.; Saunders, J. K.; Lam-
bert, J. B. J. Am. Chem. Soc. 1971, 93, 3822; (c) Kessler,
H.; Rundel, W. Chem. Ber. 1968, 101, 3350.
5. (a) Emrick, T. S. Ph. D. Dissertation, University of
Chicago, 1997; (b) Eaton, P. E.; Galoppini, E.; Gilardi,
R. J. Am. Chem. Soc. 1994, 116, 7588; (c) Tsanaktsidis,
J.; Eaton, P. E. Tetrahedron Lett. 1989, 30, 6967; (d)
Eaton, P. E.; Yip, Y. C. J. Am. Chem. Soc. 1991, 113,
7692.
In summary, we have prepared the two dialkoxy
disulfides 2 and 3 in good yield. These compounds
represent the first examples of non-benzylic dialkoxy
disulfide that liberate S2 upon heating. In addition, we
have shown that in the presence of oxygen, photolysis
of dialkoxy disulfide 2 yields the precursor alcohol 8,
via sulfite 9.
6. Eaton, P. E.; Nordari, N.; Tsanaktsidis, J.; Upadhyaya,
S. P. Synthesis 1995, 5, 501.
7. Priefer, R.; Farrell, P. G.; Harpp, D. N. Synthesis 2002,
in press.
Acknowledgements
,
8. (a) 85.4° and 1.96 A for (4-NO2-C6H4-CH2-O-S)2 in Ref.
,
2d; (b) 76.8° and 1.93 A for (4-Cl-C6H4-CH2-O-S)2 in
D.N.H. thanks Dr. P. Eaton for helpful discussions,
Drs. A.-M. Lebuis and F. Belanger-Gariepy for X-ray
crystallography data, and NSERC (CDN) for financial
support.
Tardif, S. L. Ph. D. Dissertation, McGill University,
1997.
9. (a) Della, E. E.; Hine, P. T.; Patney, H. K. J. Org. Chem.
1977, 42, 2940; (b) Eaton, P. E.; Cole, T. W., Jr. J. Am.
Chem. Soc. 1964, 86, 3157.
10. Rys, A. Z.; Harpp, D. N. Tetrahedron Lett. 1997, 38,
4931.
References
11. Recrystallization was performed with hexanes and the
dissolved sample was allowed to stand on the bench for 2
days.
1. Legfeld, F. Chem. Ber. 1895, 28, 449.
2. (a) Tardif, S. L.; Harpp, D. N. J. Org. Chem. 2000, 65,
4791; (b) Cerioni, G.; Plumitallo, A. Magnet. Reson.
Chem. 1998, 36, 461; (c) Snyder, J. P.; Nevins, N.;
Tardiff, S.; Harpp, D. N. J. Am. Chem. Soc. 1997, 119,
12685; (d) Borghi, R.; Lunazzi, L.; Placucci, G.; Cerioni,
G.; Foresti, E.; Plumitallo, A. J. Org. Chem. 1997, 62,
4924; (e) Borghi, R.; Lunazzi, L.; Placucci, G.; Cerioni,
G.; Plumitallo, A. J. Org. Chem. 1996, 61, 3327; (f)
12. Cubylcarbinol (8), SO2Cl2, pyridine, CH2Cl2, −10°C, 1 h.
1
mp 94–96°C. H NMR (500 MHz, CDCl3): l 4.05, 4.16
(ABq, J=11.0 Hz, 2H), 4.01 (m, 1H), 3.91 (m, 6H). 13C
NMR (126 MHz, CDCl3): l 62.8, 55.6, 48.5, 47.2, 44.5
ppm. Anal. calcd for C18H18O3S: C, 68.77; H, 5.77;
found: C, 68.58; H, 5.79.