J. Kim et al. / Bioorg. Med. Chem. Lett. 12 (2002) 3625–3627
2. Matthews, B. W. Acc. Chem. Res. 1988, 21, 333.
3627
the negative charge associated with phosphinate 1, a
group that binds to the positively charged active site
zinc, might be expected to result in a lower affinity for
the enzyme. The effect of the acidity and related attri-
butes of the phosphorus has received considerable
attention, but all of the examples are negatively
charged.14,15,28 Notably, charged species carry solvation
that must be displaced during a binding event.
3. Antonczak, S.; Monard, G.; Lopez, M. R.; Rivail, J. L. J.
Mol. Model 2000, 6, 527.
4. Leung, D.; Abbenante, G.; Fairlie, D. P. J. Med. Chem.
2000, 43, 305.
5. Topol, E. Lancet 1999, 354, 1797.
6. Foda, H. D.; Zucker, S. Drug Discov. Today 2001, 6, 478.
7. Letavic, M. A.; Axt, M. Z.; Barberia, J. T.; Carty, T. J.;
Danley, D. E.; Geoghegan, K. F.; Halim, N. S.; Hoth, L. R.;
Kamath, A. V.; Laird, E. R.; Lopresti-Morrow, L. L.;
McClure, K. F.; Mitchell, P. G.; Natarajan, V.; Noe, M. C.;
Pandit, J.; Reeves, L.; Schulte, G. K.; Snow, S. L.; Sweeney,
F. J.; Tan, D. H.; Yu, C. H. Bioorg. Med. Chem. Lett. 2002,
12, 1387.
8. Rabinowitz, M. H.; Andrews, R. C.; Becherer, J. D.; Bick-
ett, D. M.; Bubacz, D. G.; Conway, J. G.; Cowan, D. J.; Gaul,
M.; Glennon, K.; Lambert, M. H.; Leesnitzer, M. A.;
McDougald, D. L.; Moss, M. L.; Musso, D. L.; Rizzolio,
M. C. J. Med. Chem. 2001, 44, 4252.
9. Mock, M.; Fouet, A. Annu. Rev. Microbiol. 2001, 55, 647.
10. Johnson, E. A. Annu. Rev. Microbiol. 1999, 53, 551.
11. Chen, C.-A.; Sieburth, S.McN.; Glekas, A.; Hewitt, G. W.;
Trainor, G. L.; Erickson-Viitanen, S.; Garber, S. S.; Cordova,
B.; Jeffrey, S.; Klabe, R. M. Chem. Biol. 2001, 8, 1161.
12. Sieburth, S.McN.; Nittoli, T.; Mutahi, A. M.; Guo, L.
Angew. Chem., Int. Ed., Engl. 1998, 37, 812.
The structure of 14 differs from that of 1 in two ways. The
replacement of the Cbz group in 1 by the dihy-
drocinnamoyl group replaces an oxygen with a methylene
group. This exchange was anticipated to have a minimal
effect on the binding, based on inspection of the crystal
structures of inhibitors bound to the thermolysin active
site.24 The substitution of silicon for phosphorus, an
exchange of two second row elements, eliminates the
charge on the transition state analogue. In addition,
there are intrinsic differences in bond angles and bond
lengths for the central silicon and phosphorous units.29
Conclusions
13. Mutahi, M. w.; Nittoli, T.; Guo, L.; Sieburth, S.McN. J.
Am. Chem. Soc. 2002, 124, 7363.
14. Grobelny, D.; Goli, U. B.; Galardy, R. E. Biochemistry
1989, 28, 4948.
Silanediol 14 is an effective inhibitor of thermolysin,
with a Ki similar to that of the Grobelny/Bartlett phos-
phinate 1.
15. Morgan, B. P.; Scholtz, J. M.; Ballinger, M. D.; Zipkin,
I. D.; Bartlett, P. A. J. Am. Chem. Soc. 1991, 113, 297.
16. Rochow, E. G. Silicon and Silicones; Springer-Verlag:
New York, 1987.
17. Eaborn, C. J. Chem. Soc. 1952, 2846.
18. Bailey, W. F.; Punzalan, E. R. J. Org. Chem. 1990, 55,
5404.
19. Negishi, E.; Swanson, D. R.; Rousset, C. J. J. Org. Chem.
1990, 55, 5406.
20. Evans, D. A.; Urpi, F.; Somers, T. C.; Clark, J. S.; Bilo-
deau, M. T. J. Am. Chem. Soc. 1990, 112, 8215.
21. Haubold, W.; Herdtle, J.; Gollinger, W.; Einholz, W. J.
Organomet. Chem. 1986, 315, 1.
Silanediols, as potentially useful structural units, suffer
from a reputation for irreversible condensation to form
siloxane polymers. Some condensation of 14 may have
been observed under the acidic and basic conditions used
for hydrolysis of the phenyl–silicon bonds. Nevertheless,
the transient conversion of crude silanediol to a difluoro-
silane and subsequent hydrolysis results in a very pure
silanediol product. A similar hydrolysis of difluoro-
silanes to yield silanediols was reported by Eaborn in
195217 and a recent example was reported by Organ et
al.30 The resulting silanediol 14 can be precipitated as
stable monomeric species, or left in aqueous solution for
weeks (at least) without decomposition. Alternative
chemistry to prepare 2, the precise silanediol analogue of 1
carrying the Cbz group, is currently under study.
22. Kaufmann, D. Chem. Ber. 1987, 120, 853.
23. Earle, M. J.; Fairhurst, R. A.; Heaney, H.; Papageorgiou,
G. Synlett 1990, 621.
24. Tronrud, D. E.; Holden, H. M.; Matthews, B. W. Science
(Washington, D.C.) 1987, 235, 571.
25. Struchkov, Y. T.; Ovchinnikov, Y. E.; Shipov, A. G.;
Baukov, Y. I. Russ. Chem. Bull. 1995, 44, 1705.
26. Bassindale, A. R.; Borbaruah, M.; Glynn, S. J.; Parker,
D. J.; Taylor, P. G. J. Organomet. Chem. 2000, 606, 125.
27. Feder, J.; Brougham, L. R.; Wildi, B. S. Biochemistry
1974, 13, 1186.
Acknowledgements
This work was supported by a grant from the National
Institutes of Health.
28. Christianson, D. W.; Lipscomb, W. N. J. Am. Chem. Soc.
1988, 110, 5560.
29. For a comparison of carbon, phosphorus and silicon
structures as they relate to protease inhibitor structures, see ref
13.
References and Notes
1. Kim, J.; Sieburth, S. McN. Proceedings of 222nd ACS
National Meeting, Chicago, IL, 2001.
30. Organ, M. G.; Buon, C.; Decicco, C. P.; Combs, A. P.
Org. Lett. 2002, 4, 2683.