684
R. Beumer et al. / Tetrahedron Letters 44 (2003) 681–684
K. S.; Perumal, P. T.; Brown, H. C. J. Org. Chem. 1986,
References
51, 432; (d) Brown, H. C.; Jadhav, P. K.; Bhat, K. S. J.
Am. Chem. Soc. 1988, 110, 1535; (e) Brown, H. C.;
Racherla, U. S.; Liao, Y.; Khanna, V. V. J. Org. Chem.
1992, 57, 6608.
1. For a comprehensive review on the chemistry and biology
of the sarcodictyins, see: (a) Nicolaou, K. C.; Pfefferkorn,
J.; Xu, J.; Winssinger, N.; Ohshima, T.; Kim, S.;
Hosokawa, S.; Vourloumis, D.; van Delft, F.; Li, T.
Chem. Pharm. Bull. 1999, 47, 1199. See also: (b) Nico-
laou, K. C.; Winssinger, N.; Vorloumis, D.; Ohshima, T.;
Kim, S.; Pfefferkorn, J.; Xu, J. Y.; Li, T. J. Am. Chem.
Soc. 1998, 120, 10814; (c) Britton, R.; de Silva, E. D.;
Bigg, C. M.; McHardy, L. M.; Roberge, M.; Andersen,
R. J. J. Am. Chem. Soc. 2001, 123, 8632 and references
cited therein.
2. (a) Nicolaou, K. C.; Xu, J.-Y.; Kim, S.; Ohshima, T.;
Hosokawa, S.; Pfefferkorn, J. J. Am. Chem. Soc. 1997,
119, 11353; (b) Nicolaou, K. C.; Xu, J. Y.; Kim, S.;
Pfefferkorn, J.; Ohshima, T.; Vourloumis, D.; Hosokawa,
S. J. Am. Chem. Soc. 1998, 120, 8661; (c) Nicolaou, K.
C.; Kim, S.; Pfefferkorn, J.; Xu, J.; Ohshima, T.;
Hosokawa, S.; Vourloumis, D.; Li, T. Angew. Chem., Int.
Ed. 1998, 37, 1418.
3. (a) Nicolaou, K. C.; van Delft, F.; Ohshima, T.; Vourlou-
mis, D.; Xu, J.; Hosokawa, S.; Pfefferkorn, J.; Kim, S.;
Li, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 2520; (b)
Nicolaou, K. C.; Ohshima, T.; Hosokawa, S.; van Delft,
F. L.; Vourloumis, D.; Xu, J. Y.; Pfefferkorn, J.; Kim, S.
J. Am. Chem. Soc. 1998, 120, 8674.
4. (a) Chen, X.-T.; Gutteridge, C. E.; Bhattacharya, S. K.;
Zhou, B.; Pettus, T. R. R.; Hascall, T.; Danishefsky, S. J.
Angew. Chem., Int. Ed. 1998, 37, 185; (b) Chen, X.-T.;
Zhou, B.; Bhattacharya, S. K.; Gutteridge, C. E.; Pettus,
T. R. R.; Danishefsky, S. J. Angew. Chem., Int. Ed. 1998,
37, 789; (c) Chen, X.-T.; Bhattacharya, S. K.; Zhou, B.;
Gutteridge, C. E.; Pettus, T. R. R.; Danishefsky, S. J. J.
Am. Chem. Soc. 1999, 121, 6563.
5. (a) Ceccarelli, S.; Piarulli, U.; Gennari, C. Tetrahedron
Lett. 1999, 40, 153; (b) Baron, A.; Caprio, V.; Mann, J.
Tetrahedron Lett. 1999, 40, 9321; (c) Carter, R.; Hod-
getts, K.; McKenna, J.; Magnus, P.; Wren, S. Tetra-
hedron 2000, 56, 4367; (d) Ceccarelli, S.; Piarulli, U.;
Gennari, C. J. Org. Chem. 2000, 65, 6254; (e) Xu, Q.;
Weeresakare, M.; Rainier, J. D. Tetrahedron 2001, 57,
8029; (f) Ceccarelli, S.; Piarulli, U.; Telser, J.; Gennari, C.
Tetrahedron Lett. 2001, 42, 7421; (g) Ceccarelli, S.;
Piarulli, U.; Gennari, C. Tetrahedron 2001, 57, 8531; (h)
Telser, J.; Beumer, R.; Bell, A. A.; Ceccarelli, S. M.;
Monti, D.; Gennari, C. Tetrahedron Lett. 2001, 42, 9187;
(i) Sandoval, C.; Redero, E.; Mateos-Timoneda, M. A.;
Bermejo, F. A. Tetrahedron Lett. 2002, 43, 6521.
7. For reviews, see: (a) Grubbs, R. H.; Chang, S. Tetra-
hedron 1998, 54, 4413; (b) Armstrong, S. K. J. Chem.
Soc., Perkin Trans. 1 1998, 371; (c) Maier, M. E. Angew.
Chem., Int. Ed. 2000, 39, 2073; (d) Fu¨rstner, A. Angew.
Chem., Int. Ed. 2000, 39, 3012.
8. (a) Huang, J.; Stevens, E. D.; Nolan, S. P.; Petersen, J. L.
J. Am. Chem. Soc. 1999, 121, 2674; (b) Scholl, M.; Trnka,
T. M.; Morgan, J. P.; Grubbs, R. H. Tetrahedron Lett.
1999, 40, 2247; (c) Huang, J.; Schanz, H.-J.; Stevens, E.
D.; Nolan, S. P. Organometallics 1999, 18, 5375; (d)
Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org.
Lett. 1999, 1, 953; (e) Trnka, T. M.; Grubbs, R. H. Acc.
Chem. Res. 2001, 34, 18.
9. Compound 12: [h]D20=−29.0 (c 0.71, EtOAc); 14: [h]2D0=
−15.6 (c 0.34, EtOAc); 16: [h]2D0=+6.0 (c 0.05, EtOAc);
21: [h]2D0=−17.0 (c 0.33, EtOAc); 22: [h]2D0=−39.6 (c 0.24,
EtOAc); 23: [h]D20=−45.0 (c 0.28, EtOAc); 27: [h]2D0=
− 43.8 (c 0.70, EtOAc). All compounds described in the
present paper gave HRMS and spectroscopic data (1H
NMR, 13C NMR, IR) completely in accord with their
assigned structures. Details will be provided in a subse-
quent full paper.
10. Application of the RCM reaction to ten-membered car-
bocycles is still very rare, see: (a) Nevalainen, M.; Koski-
nen, A. M. P. Angew. Chem., Int. Ed. 2001, 40, 4060; J.
Org. Chem. 2002, 67, 1554; (b) Ref. 5h.
11. The use of ‘second generation’ metathesis catalysts results
in the selective formation of the thermodynamically
favored stereoisomeric products in RCM reactions fur-
nishing medium-sized rings, see: (a) Fu¨rstner, A.; Rad-
kowski, K.; Wirtz, C.; Goddard, R.; Lehmann, C. W.;
Mynott, R. J. Am. Chem. Soc. 2002, 124, 7061; (b)
Murga, J.; Falomir, E.; Garc`ıa-Fortanet, J.; Carda, M.;
Marco, J. A. Org. Lett. 2002, 4, 3447.
12. Buschmann, N.; Ru¨ckert, A.; Blechert, S. J. Org. Chem.
2002, 67, 4325.
13. Hoye, T. R.; Zhao, H. Org. Lett. 1999, 1, 1123.
14. For discussions on the role of allylic oxygen substituents
in the RCM reaction, see: (a) White, J. D.; Hrnciar, P. J.
Org. Chem. 2000, 65, 9129; (b) Paquette, L. A.; Efremov,
I. J. Am. Chem. Soc. 2001, 123, 4492; (c) Maishal, T. K.;
Sinha-Mahapatra, D. K.; Paranjape, K.; Sarkar, A. Tet-
rahedron Lett. 2002, 43, 2263.
15. (a) Fuji, K.; Kawabata, T.; Fujita, E. Chem. Pharm. Bull.
1980, 28, 3662; (b) Sasaki, M.; Noguchi, T.; Tachibana,
K. J. Org. Chem. 2002, 67, 3301.
6. (a) Brown, H. C.; Desai, M. C.; Jadhav, P. K. J. Org.
Chem. 1982, 47, 5065; (b) Brown, H. C.; Jadhav, P. K. J.
Am. Chem. Soc. 1983, 105, 2092; (c) Jadhav, P. K.; Bhat,