A R T I C L E S
Jensen et al.
Scheme 1
droxylases.6 The catalytic domain sequences of these enzymes
are more than 80% identical, and iron(II), reduced tetrahydro-
biopterin (BH4), and dioxygen are required to selectively
hydroxylate the aromatic rings. Crystallographic studies show
that the iron(II) center is ligated by a recurring 2-His-1-
carboxylate facial triad motif7 arising from amino acid side
chains and water molecules in close proximity to BH4.8
Biophysical studies and DFT calculations suggest a reaction
mechanism in which iron(II) and BH4 react with dioxygen to
form an iron(II)-peroxo complex, Scheme 1.9 Heterolysis of
the bound O-O bond forms BH3OH and oxoiron(IV), which
reacts as an electrophile toward the aromatic substrate. Release
of BH2, H2O, and the hydroxylated product completes the
turnover. Attention also is called to analogous examples of post-
translational oxidative modification of aromatic residues in the
vicinity of nonheme iron active sites.10
As noted previously, direct evidence for oxoiron(IV) as the
hydroxylating intermediate is lacking. However, several obser-
vations support this assignment: (i) TyrH 16O/18O kinetic isotope
effects are consistent with formation of a pterin hydroperoxide
from O2.11 (ii) Observations of NIH shifts on aryl substrates
are indicative of cationic intermediates and are consistent with
O-atom transfer.9,12 (iii) Reaction of deuterated substrate at a
truncated TrpH catalytic domain yields an inverse kinetic isotope
effect, consistent with partially rate-limiting electrophilic attack.9
(iv) TyrH and PheH convert 4-CH3-phenylalanine into a mixture
of 3- and 4-methyltyrosines and 4-HOCH2-phenylalanine.13 (v)
Consumption of reduced pterin and O2 by TyrH can be
uncoupled from product formation, indicative of competitive
formation of the hydroxylating intermediate.14 (vi) This com-
petition exhibits a strong substituent effect when 4-substituted
phenylalanines are utilized as substrates, which is consistent
with an electron-deficient transition state.13 (vii) The absence
of such effects on overall rates of pterin oxidation is consistent
with rate-limiting formation of a hydroxylating intermediate
prior to actual hydroxylation of the substrates.15 (viii) A disputed
peroxide shunt mode has been reported for TyrH and H2O2.16
A few reports of model chemistry are relevant to this oxidase
enzymology. These include iron-catalyzed oxygenations of
coordinated phenolates and arene ligand substituents by O2/
reductant couples.17,18 Related peroxide-driven reactions also
are known.18-20 However, examinations of the scope and
mechanisms of such reactivity remain incomplete.
Our laboratory has utilized iron complexes of tris(2-pyridyl-
methylamine) (TPA) and related ligands as models of nonheme
iron oxygenases and as catalysts for selective oxidative trans-
formations of organic substrates.21 Such complexes were
demonstrated to catalyze hydroxylation of alkanes, epoxidation
and cis-dihydroxylation of olefins, and sulfoxidation of organic
sulfides by peroxides. Evidence has accumulated suggesting
these chemistries are mediated by high-valent iron-oxo spe-
cies,21,22 including the ability to induce asymmetry in certain
products using chiral ligand derivatives.23 However, the mech-
anisms of these reactions vary depending on the added
(13) (a) Siegmund, H.-U.; Kaufman, S. J. Biol. Chem. 1991, 266, 2903. (b)
Hillas, P. J.; Fitzpatrick, P. F. Biochemistry 1996, 35, 6969. (c) Frantom,
P. A.; Pongdee, R.; Sulikowski, G. A.; Fitzpatrick, P. F. J. Am. Chem.
Soc. 2002, 124, 4202.
(14) Davis, M. D.; Kaufman, S. J. Biol. Chem. 1989, 264, 8585.
(15) Fitzpatrick, P. F. Biochemistry 1991, 30, 6386.
(2) (a) Que, L., Jr.; Ho, R. Y. N. Chem. ReV. 1996, 96, 2607. (b) Solomon, E.
I.; Brunold, T. C.; Davis, M. I.; Kemsley, J. N.; Lee, S.-K.; Lehnert, N.;
Neese, F.; Skulan, A. J.; Yang, Y.-S.; Zhou, J. Chem. ReV. 2000, 100,
235.
(3) (a) Waller, B. J.; Lipscomb, J. D. Chem. ReV. 1996, 96, 2625. (b) Merkx,
M.; Kopp, D. A.; Sazinsky, M. H.; Blazyk, J. L.; Mu¨ller, J.; Lippard S. J.
Angew. Chem., Int. Ed. 2001, 40, 2782.
(4) (a) Schlichting, I.; Berendzen, J.; Chu, K.; Stock, A. M.; Maves, S. A.;
Benson, D. E.; Sweet, R. M.; Ringe, D.; Petsko, G. A.; Sligar, S. G. Science
2000, 287, 1615. (b) Kellner, D. G.; Hung, S. C.; Weiss, K. E.; Sligar, S.
G. J. Biol. Chem. 2002, 277, 9641.
(16) (a) Dix, T. A.; Kuhn, D. M.; Benkovic, S. J. Biochemistry 1987, 26, 3354.
(b) Ribeiro, P.; Pigeon, D.; Kaufman, S. J. Biol. Chem. 1991, 266, 16207.
(17) (a) Hage, J. P.; Sawyer, D. T. J. Am. Chem. Soc. 1995, 117, 5617. (b)
Funabiki, T.; Yokomizo, T.; Suzuki, S.; Yoshida, S. Chem. Commun. 1997,
151. (c) Hegg, E. L.; Ho, R. Y. N.; Que, L., Jr. J. Am. Chem. Soc. 1999,
121, 1972.
(18) (a) Me´nage, S.; Galey, J.-B.; Hussler, G.; Seite´, M.; Fontecave, M. Angew.
Chem., Int. Ed. 1996, 35, 2353. (b) Me´nage, S.; Galey, J.-B.; Dumats, J.;
Hussler, G.; Seite´, M.; Luneau, I. G.; Chottard, G.; Fontecave, M. J. Am.
Chem. Soc. 1998, 120, 13370.
(19) Mekmouche, Y.; Me´nage, S.; Toia-Duboc, C.; Fontecave, M.; Galey, J.-
B.; Lebrun, C.; Pe´caut, J. Angew. Chem., Int. Ed. 2001, 40, 949.
(20) Kitajima, N.; Ito, M.; Fukui, H.; Moro-oka, Y. J. Am. Chem. Soc. 1993,
115, 9335.
(21) (a) Leising, R. A.; Norman, R. E.; Que, L., Jr. Inorg. Chem. 1990, 29,
2553. (b) Leising, R. A.; Brennan, B. A.; Que, L., Jr.; Fox, B. G.; Mu¨nck,
E. J. Am. Chem. Soc. 1991, 113, 3988. (c) Kojima, T.; Leising, R. A.;
Yan, S.; Que, L., Jr. J. Am. Chem. Soc. 1993, 115, 11328. (d) Kim, J.;
Larka, E.; Wilkinson, E. C.; Que, L., Jr. Angew. Chem., Int. Ed. 1995, 34,
2048. (e) Kim, J.; Dong, Y.; Larka, E.; Que, L., Jr. Inorg. Chem. 1996, 35,
2369. (f) Kim, J.; Harrison, R. G.; Kim, C.; Que, L., Jr. J. Am. Chem. Soc.
1996, 118, 4373. (g) Kim, C.; Chen, K.; Kim, J.; Que, L., Jr. J. Am. Chem.
Soc. 1997, 119, 5964. (h) Chen, K.; Que, L., Jr. Angew. Chem., Int. Ed.
1999, 38, 2227. (i) Chen, K.; Que, L., Jr. Chem. Commun. 1999, 1375. (j)
Costas, M.; Chen, K.; Que, L., Jr. Coord. Chem. ReV. 2000, 200-2, 517.
(k) Miyake, H.; Chen, K.; Lange, S. J.; Que, L., Jr. Inorg. Chem. 2001,
40, 3534. (l) Chen, K.; Que, L., Jr. J. Am. Chem. Soc. 2001, 123, 6327.
(m) Chen, K.; Costas, M.; Kim, J.; Tipton, A. K.; Que, L., Jr. J. Am. Chem.
Soc. 2002, 124, 3026. (n) Ryu, J. Y.; Kim, J.; Costas, M.; Chen, K.; Nam,
W.; Que, L., Jr. Chem. Commun. 2002, 1288.
(5) (a) Lee, S.-K.; Nesheim, J. C.; Lipscomb, J. D. J. Biol. Chem. 1993, 268,
21569. (b) Shu, L.; Nesheim, J. C.; Kauffmann, K.; Mu¨nck, E.; Lipscomb,
J. D.; Que, L., Jr. Science 1997, 275, 515. (c) Valentine, A. M.; Stahl, S.
S.; Lippard, S. J. J. Am. Chem. Soc. 1999, 121, 3876.
(6) (a) Kappock, T. J.; Carradona, J. P. Chem. ReV. 1996, 96, 2659. (b)
Fitzpatrick, P. F. Annu. ReV. Biochem. 1999, 68, 355.
(7) Hegg, E. L.; Que, L., Jr. Eur. J. Biochem. 1997, 250, 625.
(8) (a) Flatmark, T.; Stevens, R. C. Chem. ReV. 1999, 99, 2137. (b) Que, L.,
Jr. Nat. Struct. Biol. 2000, 7, 182.
(9) (a) Moran, G. R.; Derecskei-Kovacs, A.; Hillas, P. J.; Fitzpatrick, P. F. J.
Am. Chem. Soc. 2000, 122, 4535. (b) Bassan, A.; Blomberg, M. R. A.;
Siegbahn, P. E. M. Eur. Chem. J. 2003, 9, 106.
(10) (a) Ormo¨, M.; deMare´, F.; Regnstro¨m, K.; A° berg, A.; Sahlin, M.; Ling, J.;
Loehr, T. M.; Sanders-Loehr, J.; Sjo¨berg, B.-M. J. Biol. Chem. 1992, 267,
8711. (b) Baldwin, J.; Voegtli, W. C.; Khidekel, N.; Moe¨nne-Loccoz, P.;
Krebs, C.; Pereira, A. S.; Ley, B. A.; Huynh, B. H.; Loehr, T. M.; Riggs-
Gelasco, P. J.; Rosenzweig, A. C.; Bollinger, J. M., Jr. J. Am. Chem. Soc.
2001, 123, 7017. (c) Liu, A.; Ho, R. Y. N.; Que, L., Jr.; Ryle, M. J.; Phinney,
B. S.; Hausinger, R. P. J. Am. Chem. Soc. 2001, 123, 5126.
(11) Francisco, W. A.; Tian, G.; Fitzpatrick, P. F.; Klinman, J. P. J. Am. Chem.
Soc. 1998, 120, 4057.
(22) MacFaul, P. A.; Ingold, K. U.; Wayner, D. D. M.; Que, L., Jr. J. Am. Chem.
Soc. 1997, 119, 10594.
(23) Costas, M.; Tipton, A. K.; Chen, K.; Jo, D.-H.; Que, L., Jr. J. Am. Chem.
Soc. 2001, 123, 6722.
(12) Guroff, G.; Daly, J. W.; Jerina, D. M.; Renson, J.; Witkop, B.; Udenfriend,
S. Science 1967, 157, 1524.
9
2114 J. AM. CHEM. SOC. VOL. 125, NO. 8, 2003