8398
Y. Takano et al. / Tetrahedron Letters 43 (2002) 8395–8399
References
1. Varki, A. Glycobiology 1993, 3, 97–130.
2. (a) Nakahara, Y.; Nakahara, Y.; Ogawa, T. Carbohydr.
Res. 1996, 292, 71–78; (b) Guo, Z.-W.; Nakahara, Y.;
Nakahara, Y.; Ogawa, T. Angew. Chem., Int. Ed. Engl.
1997, 36, 1464–1466; (c) Nakahara, Y.; Nakahara, Y.;
Ito, Y.; Ogawa, T. Tetrahedron Lett. 1997, 38, 7211–7214;
(d) Guo, Z.-W.; Nakahara, Y.; Nakahara, Y.; Ogawa, T.
Bioorg. Med. Chem. 1997, 5, 1917–1924; (e) Nakahara,
Y.; Nakahara, Y.; Ito, Y.; Ogawa, T. Carbohydr. Res.
1998, 309, 287–296; (f) Nakamura, K.; Ishii, A.; Ito, Y.;
Nakahara, Y. Tetrahedron 1999, 55, 11253–11266; (g)
Ando, S.; Nakahara, Y.; Ito, Y.; Ogawa, T.; Nakahara,
Y. Carbohydr. Res. 2000, 329, 773–780; (h) Hojo, H.;
Watabe, J.; Nakahara, Y.; Nakahara, Y.; Ito, Y.;
Nabeshima, K.; Toole, B. P. Tetrahedron Lett. 2001, 42,
3001–3004; (i) Ishii, A.; Hojo, H.; Nakahara, Y.; Ito, Y.;
Nakahara, Y. Biosci. Biotechnol. Biochem. 2002, 66, 225–
232.
3. Fukuda, M.; Tsuboi, S. Biochim. Biophys. Acta 1999,
1455, 205–217.
Figure 2.
4. (a) Singh, L.; Nakahara, Y.; Ito, Y.; Nakahara, Y.
Tetrahedron Lett. 1999, 40, 3769–3772; (b) Singh, L.;
Nakahara, Y.; Ito, Y.; Nakahara, Y. Carbohydr. Res.
2000, 325, 132–142.
5. Lemiux, R. U.; Takeda, M. T.; Chung, B. Y. In Synthetic
Methods for Carbohydrates; El Khadem, H. S., Ed.; ACS
Symposium Series 39; American Chemical Society: Wash-
ington, DC, 1976; pp. 90–115.
6. Debenham, J. S.; Madsen, R.; Roberts, C.; Fraser-Reid,
B. J. Am. Chem. Soc. 1995, 117, 3302–3303.
7. Castro-Palomino, J. C.; Schmidt, R. R. Tetrahedron Lett.
1995, 36, 5343–5346.
8. Lergenmu¨ller, M.; Ito, Y.; Ogawa, T. Tetrahedron 1998,
54, 1381–1394.
(82.5% TFA, 5% thioanisole, 5% phenol, 5% H2O, 2.5%
1,2-ethanedithiol). The resulting partially protected gly-
copeptide was submitted to debenzylation with the low
acidity TfOH mixture. Fig. 2 shows HPLC profile of
the product. Glycopeptide 24 was eluted as peak 2,
while the unreacted octapeptide and the glycopeptide
missing a Gal residue are included in peak 1 and peak
3, respectively. The desired glycopeptide was isolated by
HPLC, and characterized by amino acid analysis as
well as by mass spectrometry. The overall yield esti-
mated was 27% based on the amino acid analysis.
9. Qiu, D.; Koganty, R. R. Tetrahedron Lett. 1997, 38,
45–48.
In conclusion, core 2 O-linked tetrasaccharide building
blocks 22 and 23 were synthesized via stereocontrolled
glycosylation by using N-trichloroacetyl-D-lactosaminyl
10. Meinjohanns, E.; Meldal, M.; Paulsen, H.; Bock, K. J.
Chem. Soc., Perkin Trans. 1 1995, 405–415.
11. Vargas-Berenguel, A.; Meldal, M.; Paulsen, H.; Bock, K.
J. Chem. Soc., Perkin Trans. 1 1994, 2615–2619.
12. Blatter, G.; Beau, J.-M.; Jacquinet, J.-C. Carbohydr. Res.
1994, 260, 189–201.
glycosyl donor 17. The benyl-protected tetrasaccharide
was used for the Fmoc-based solid-phase synthesis of
glycopeptide 24, representing leukosialin (215–224).
Removal of the benzyl protecting group was efficiently
accomplished under the low acidity TfOH conditions. It
was observed that the conditions also led to truncation
of the glycan chains in part. Further studies aimed at
expanding this benzyl-protection approach to the syn-
thesis of glycopeptides bearing complex N-linked gly-
cans are currently underway.
13. Madsen, R.; Roberts, C.; Fraser-Reid, B. J. Org. Chem.
1995, 60, 7920–7926.
14. Aly, M. R. E.; Castro-Palomino, J. C.; Ibrahim, E. I.;
El-Ashry, E. H.; Schmidt, R. R. Eur. J. Org. Chem. 1998,
2305–2316.
15. Bowers, S. G.; Coe, D. M.; Boons, G.-J. J. Org. Chem.
1998, 63, 4570–4571.
16. Castro-Palomino, J. C.; Schmidt, R. R. Tetrahedron Lett.
1995, 36, 6871–6874.
17. Castro-Palomino, J. C.; Schmidt, R. R. Tetrahedron Lett.
Acknowledgements
2000, 41, 629–632.
18. Singh, L.; Seifert, J. Tetrahedron Lett. 2001, 42, 3133–
3136.
19. Watabe, J.; Singh, L.; Nakahara, Y.; Ito, Y.; Hojo, H.;
Nakahara, Y. Biosci. Biotechnol. Biochem. 2002, 66,
1904–1914.
20. Takatani, M.; Nakama, T.; Kubo, K.; Manabe, S.;
Nakahara, Y.; Ito, Y.; Nakahara, Y. Glycoconjugate J.
2000, 17, 361–375.
This work was supported by Grant-in-Aid for Scientific
Research from the Ministry of Education, Culture,
Sports, Science, and Technology of Japan [(B) No.
13460051] and in part by CREST program of Japan
Science and Technology Corporation. The authors also
acknowledge Tokai University for a Grant-in-Aid for
High-Technology Research.