Fig. 7 Correlation between calculated HOMO energies and experi-
mental first oxidation potential of carotenoids.
having more than seven conjugated double bonds. This effect
increases with increasing solvent polarity, as is shown in Fig.
8. In the present work we observed that the first oxidation
potential of carotenoids decreases with an increase in the num-
ber of double bonds in the conjugated chain. With the oxida-
Fig. 9 Energy diagram of C–P dyads showing the porphyrin first
exited singlet state (C–1P) and the energy levels of the charge separated
states (Cꢁ+–Pꢁꢂ) with carotenoid moieties having different number of
conjugated double bonds.
ꢃ
tion E1 values of the carotenoid and the reduction potential of
the porꢂphyrin moiety (ꢂ1.19 V vs SCE)48 the energy of the
Cꢁ+–Pꢁ states in the different C–P dyads can be evaluated.
The energy of the porphyrin moiety (P) first excited singlet
states (1.9 eV) has been calculated from the average of the fre-
quencies of the longest wavelength absorption maxima and the
shortest wavelength emission maxima.48 Fig. 9 shows that
Cꢁ+–Pꢁꢂstates lie below P first excited singlet state (C–1P) only
for dyads in which the carotenoid moiety has eight or more
conjugated double bonds.
In summary, the results support the idea that an electron
transfer mechanism can be operative in the quenching of por-
phyrin singlet state in C–P dyads, at least eight double bonds
being necessary for it to be effective. It is possible that in vivo
the photosynthesis regulation mechanism also involves charge
transfer quenching by long chain carotenoids when the organ-
ism is under high illumination conditions.
´
Nacional de Investigaciones Cientıficas y Tecnicas, Consejo
de Investigaciones Cientıficas y Tecnologicas de la Provincia
´
´
´
´
de Cordoba, Agencia Nacional de Promocion Cientıfica y
Tecnologica, and Fundacion Antorchas.
´
´
´
´
References
1
2
3
4
5
6
D. Gust, T. A. Moore, A. L. Moore, G. Jori and E. Reddi, Ann.
NY Acad. Sci., 1993, 691, 32–47.
P. J. Walla, P. A. Linden, K. Ohta and G.R. Fleming,
J.Phys.Chem. A, 2002, 106, 1909–1916.
B. Demming-Adams and W. W. Adams III, Photosynth. Res.,
1990, 25, 187–197.
´
T. Polıvka, D. Zigmantas and V. Sundsto¨rm, Biochem., 2002, 41,
439–450.
S. L. Cardozo, D. E. Nicodem, T. A. Moore, A.L. Moore and
D. Gust, J. Braz. Chem. Soc., 1996, 7, 19–30.
R. M. Hermant, P. A. Liddell, S. Lin, R. G. Alden, H. K. Kang,
A. L. Moore, T. A. Moore and D. Gust, J. Am. Chem. Soc., 1993,
115, 2080–2081.
Acknowledgements
7
G. Leatherman, E. N. Durantini, D. Gust, T. A. Moore, A. L.
Moore, S. Stone, Z. Zhou, P. Rez, Y. Z. Liu and S. M. Lindsay,
J. Phys. Chem. B., 1999, 103, 4006–4010.
P. Faller, A. Pascal and A. W. Rutherford, Biochemistry, 2001, 40,
6431–6440.
This work was supported in part by National Science Founda-
´
´
tion grant CHE-0078835 and by Secretarıa de Ciencia y Tec-
nica de la Universidad Nacional de Rıo Cuarto, Consejo
8
9
´
J. Hanley, Y. Demigiannakis, A. Pascal, P. Faller and A. W.
Rutherford, Biochemistry, 1999, 38, 8189–8195.
10 Y. Demigiannakis, J. Hanley and A. W. Rutherford, J. Am.
Chem. Soc., 2000, 122, 400–401.
11 J. S Vrettos, D. H. Steward, J. C. de Paula and G. W. Brudvig,
J. Phys. Chem. B, 1999, 103, 6403–6406.
12 A. Pascal, A. Telfer, J. Barber and B. Robert, FEBS Lett., 1999,
453, 11–14.
13 D. Gust and T. Moore, Advances in Photochemistry, ed.
D. Volman, G. Hammond and D. Neckers, 1991. vol. 16, p. 1–65.
14 A. L. Moore, T. A. Moore, D. Gust, J. J. Silber, L. Sereno,
F. Fungo, L. Otero, L. G. Steinberg-Yfrach, P. A. Liddell,
S. C. Hung, H. Imahori, S. Cardoso, D. Tatman and A. N.
Macpherson, Pure Appl. Chem., 1997, 69, 2111–2116.
15 G. Steinberg-Yfrach, J. Rigaud, E. N. Durantini, A. L. Moore,
D. Gust and T.A. Moore, Nature, 1998, 392, 479–482.
16 E. Land, D. Lexa, R. V. Bensasson, D. Gust, T. A. Moore, A. L.
Moore, P. A. Liddell and G. A. Nemeth, J. Phys. Chem., 1987, 91,
4831–4835.
Fig. 8 Relative quantum yields of fluorescence from the porphyrin
moiety in C5–P to C11–P dyads in (K) toluene and (S) acetonitrile.
lexc ¼ 590 nm. Fluorescence of porphyrin (P) was used as reference.
(ref. 5).
17 S. Beutner, O. Gra¨f, K. Schaper and H.D. Martin, Pure Appl.
Chem., 1994, 66, 955–962.
18 L. Sereno, J. J. Silber, L. Otero, M. Bohorquez, A. L. Moore,
T. A. Moore and D. Gust, J. Phys. Chem., 1996, 100, 814–821.
474
Phys. Chem. Chem. Phys., 2003, 5, 469–475