C O M M U N I C A T I O N S
Scheme 1
75, 2326. (c) Dollt, H.; Zabel, V. Aust. J. Chem. 1999, 52, 259. (d)
Mironiuk-Puchalska, E.; Kolaczkowska, E.; Sas, W. Tetrahedron Lett.
2002, 43, 8351.
(2) (a) Stille: Tanaka, K.; Katsumura, S. Org. Lett. 2000, 2, 373. (b)
Sonogashira: Dai, W.-M.; Wu, J.; Fong, K. C.; Lee, M. Y. H.; Lau, C.
W. J. Org. Chem. 1999, 64, 5062. (c) Suzuki: Zhou, S. M.; Yan, Y. L.;
Deng, M. Z. Synlett 1998, 198. (d) Rossi, R.; Bellina, F.; Bechini, C.;
Mannina, L.; Vergamini, P. Tetrahedron 1998, 54, 135. (e) Zhang, X.;
Qing, F.-L.; Yu, Y. J. Org. Chem. 2000, 65, 7075. (f) Qing, F.-L.; Zhang,
X. Tetrahedron Lett. 2001, 42, 5929.
(3) Forti, L.; Ghelfi, F.; Pagnoni, U. M. Tetrahedron Lett. 1995, 36, 3023.
(4) Kruper, W. J., Jr.; Emmons, A. H. J. Org. Chem. 1991, 56, 3323.
(5) Alami, M.; Crousse, B.; Linstrumelle, G. Tetrahedron Lett. 1995, 36, 3687.
(6) Buschmann, E.; Schafer, B. Tetrahedron 1994, 50, 2433.
Table 2. Synthesis of Dihalohydrin 2
(7) (a) Satoh, T.; Itoh, N.; Onda, K.; Kitoh, Y.; Yamakawa, K. Bull. Chem.
Soc. Jpn. 1992, 65, 2800. (b) Ishihara, T.; Shintani, A.; Yamanaka, H.
Tetrahedron Lett. 1998, 39, 4865.
(8) (a) Chan, T. H.; Moreland, M. Tetrahedron Lett. 1978, 6, 515. (b)
Karrenbrock, F.; Schaefer, H. J. Tetrahedron Lett. 1979, 31, 2913. (c)
Villieras, J.; Perriot, P.; Normant, J. F. Synthesis 1978, 1, 31. (d) Braun,
N. A.; Buerkle, U.; Feth, M. P.; Klein, I.; Spitzner, D. Eur. J. Org. Chem.
1998, 8, 1569. (e) Huang, Z.-Z.; Wu, L.-L.; Zhu, L.-S.; Huang, X. Synth.
Commun. 1996, 26, 677. (f) Zapata, A.; Ferrer, G. F. Synth. Commun.
1986, 16, 1611. (g) Tago, K.; Kogen, H. Tetrahedron Lett. 2000, 56, 8825.
(h) Sano, S.; Ando, T.; Yokoyama, K.; Nagao, Y. Synlett 1998, 777.
(9) For additional examples of recent CrCl2-based methodology, see: (a) Baati,
R.; Barma, D. K.; Falck, J. R.; Mioskowski, C. Tetrahedron Lett. 2002,
43, 2179. (b) Barma, D. K.; Kundu, A.; Baati, R.; Mioskowski, C.; Falck,
J. R. Org. Lett. 2002, 4, 1387. (c) Baati, R.; Barma, D. K.; Falck, J. R.;
Mioskowski, C. J. Am. Chem. Soc. 2001, 123, 9196.
entry
aldehyde
dihalohydrin
yield (%)
1
2
3
4
5
6
11
11
4
13
9
32
33
34
35
36
37
X ) Cl, R′ ) Me
X ) Br, R′ ) Me
X ) Cl, R′ ) Me
X ) Cl, R′ ) Me
X ) Cl, R′ ) Me (de 1:1.4)
X ) F, R′ ) Et
82
65
84
78
75
76
4
limiting chromium and low temperature (Table 2).12c Adduct 3712b
was prepared using commercial ethyl bromodifluoroacetate, whereas
the others were derived from the corresponding trichloro- or
tribromoacetates. Exposure of 32-36 to the original reaction
conditions gave rise, as expected, to only (Z)-R-haloacrylates in
yields comparable to those in Table 1.
In conclusion, we have validated a highly stereoselective
synthesis of (Z)-R-haloacrylates 3 via CrCl2-mediated olefinations
of aldehydes with commercial trihaloacetates and also described
the isolation of the dihalohydrin intermediate 2. Initial experiments
indicate this methodology has a wide scope. In contrast with most
organochromium reagents, ketones are suitable substrates for the
combination of trihaloacetate and CrCl2. In some instances,
remarkably high stereoselectivities are observed as in the case of
acetophenone (38), which furnished the tetrasubstituted olefin 3913
in a 75:1 Z/E ratio20 (eq 2), but modest yield. In yet another
(10) General Procedure for the Synthesis of (Z)-R-Haloacrylates (3)/Using
Stoichiometric Chromium: Methyl trihaloacetate16 (1) (1 mmol) and
aldehyde (1 mmol) in THF (2 mL) were added to a stirring suspension of
23
anhydrous CrCl2 (4.5 mmol) in THF (8 mL) at ambient temperature.
After 0.5 h, the resultant reddish reaction mixture was quenched with
water, extracted thrice with ether, and the combined ethereal extracts were
evaporated. Chromatographic purification of the residue on SiO2 furnished
methyl (Z)-R-haloacrylate (3) in the indicated yields (Table 1). Using
Catalytic Chromium: Methyl trihaloacetate16 (1) (1 mmol) and aldehyde
(1 mmol) in THF (2 mL) were added to a stirring suspension of anhydrous
23
CrCl2 (50 mol %), Mn powder (4 mmol), and freshly distilled TMSCl
(6 mmol) in THF (8 mL) at ambient temperature. After 12 h, the resultant
reddish reaction mixture was quenched with water, extracted thrice with
ether, and the combined ethereal extracts were evaporated. Chromato-
graphic purification of the residue on SiO2 gave (Z)-R-haloacrylate (3) in
the indicated yields (Table 1). Preparation of Dihalohydrins (2): Methyl
trihaloacetate16 (1) (1 mmol) and aldehyde (1 mmol) in THF (2 mL) were
23
added to a stirring suspension of anhydrous CrCl2 (2.5 mmol) in THF
(8 mL) at 0 °C. After 12 h at 0 °C, the resultant reddish reaction mixture
was quenched with water, extracted thrice with ether, and the combined
ethereal extracts were evaporated. Chromatographic purification of the
residue on SiO2 gave dihalohydrin 3 in the indicated yields (Table 2).
(11) Fu¨rstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 12349.
(12) (a) Fu¨rstner, A. Synthesis 1989, 571-590. (b) Yoshida, M.; Suzuki, D.;
Iyoda, M. Synth. Commun. 1996, 26, 2523. (c) Wessjohann, L.; Gabriel,
T. J. Org. Chem. 1997, 62, 3772.
(13) (a) Takai, K.; Hotta, Y.; Oshima, K.; Nozaki, H. Bull. Chem. Soc. Jpn.
1980, 53, 1698. (b) For an exceptional example, see: Ishino, Y.; Mihara,
M.; Nishihama, S.; Nishiguchi, I. Bull. Chem. Soc. Jpn. 1998, 71, 2669.
(14) Comparable results were obtained with most other esters including ethyl,
tert-butyl, and benzyl.
(15) Hayon, A. F.; Fehrentz, J. A.; Chapleur, Y.; Castro, B. Bull. Soc. Chim.
Fr. 1983, 207.
variation, the efficient transformation of aldehyde 4 to (E)-
methacrylate 4021 using methyl 2,2-dichloroproprionate is unrivaled
by conventional reagents for its stereoselectivity and yield (eq 3).22
We anticipate Cr-mediated olefinations will find broad applicability
and plan to publish additional findings soon.
(16) Dhoubhadel, S. P. J. Indian Chem. Soc. 1976, 53, 951-952.
(17) Because of literature discord, the structures of chloride 24 and bromide
25 were confirmed by X-ray analysis and correlated to other examples in
Table 1.
(18) Sai, H.; Ogiku, T.; Nishitani, T.; Hiramatsu, H.; Horikawa, H.; Iwasaki,
T.Synthesis 1995, 582-586.
(19) Kochi, J. K.; Davis, D. D. J. Am. Chem. Soc. 1964, 86, 5264. (b) Kochi,
J. K.; Singleton, D. M. J. Am. Chem. Soc. 1968, 90, 1582.
(20) The Z/E-ratio was highly dependent upon the solvent composition, ranging
from 5:1 in THF alone to 75:1 in DMF/THF (1:1) at 0 °C.
(21) Shimagaki, M.; Shiokawa, M.; Sugai, K.; Teranaka, T.; Nakata, T.; Oishi,
T. Tetrahedron Lett. 1988, 29, 659.
Acknowledgment. Financial support from the CNRS, the Robert
A. Welch Foundation, and NIH (GM31278, DK38226) is gratefully
acknowledged.
Supporting Information Available: Physical and spectroscopic
data for all new compounds (PDF); X-ray crystallographic files (CIF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
(22) (a) Christmann, M.; Bhatt, U.; Quitschalle, M.; Claus, E.; Kalesse, M.
Angew. Chem., Int. Ed. 2000, 39, 4364. (b) Still, W. C.; Gennari, C.
Tetrahedron Lett. 1983, 24, 4405. (c) Smith, A. B., III; Brandt, B. M.
Org. Lett. 2001, 3, 1685. (d) Rodriguez, C. M.; Martin, T.; Ramirez, M.
A.; Martin, V. S. J. Org. Chem. 1994, 59, 4461.
(23) While the physical appearance and color varied, equivalent results were
obtained using CrCl2 from different commercial sources, inter alia, Strem
and Aldrich Chem. Co.
References
(1) (a) Kakehi, A.; Ito, S. J. Org. Chem. 1974, 39, 1542. (b) Marvel, C. S.;
Weil, E. D.; Wakefield, L. B.; Fairbanks, C. W. J. Am. Chem. Soc. 1953,
JA029938D
9
J. AM. CHEM. SOC. VOL. 125, NO. 11, 2003 3219