10.1002/chem.201806057
Chemistry - A European Journal
FULL PAPER
[5]
[6]
B. Sundararaju, M. Achard, C. Bruneau, Chem. Soc. Rev. 2012, 41,
4467-4483.
[16] T. Verdelet, R. M. Ward, D. G. Hall, Eur. J. Org. Chem. 2017, 2017,
5729-5738.
a) Y. Nishibayashi, I. Wakiji, M. Hidai, J. Am. Chem. Soc. 2000, 122,
11019-11020; b) B. D. Sherry, A. T. Radosevich, F. D. Toste, J. Am.
Chem. Soc. 2003, 125, 6076-6077; c) M. Georgy, V. Boucard, J.-M.
Campagne, J. Am. Chem. Soc. 2005, 127, 14180-14181; d) C. Defieber,
M. A. Ariger, P. Moriel, E. M. Carreira, Angew. Chem. Int. Ed. 2007, 46,
3139-3143; Angew. Chem. 2007, 119, 3200-3204; e) Y. Yamashita, A.
Gopalarathnam, J. F. Hartwig, J. Am. Chem. Soc. 2007, 129, 7508-
7509.
[17] a) M. Hellal, F. C. Falk, E. Wolf, M. Dryzhakov, J. Moran, Org. Biomol.
Chem. 2014, 12, 5990-5994; b) M. Dryzhakov, M. Hellal, E. Wolf, F. C.
Falk, J. Moran, J. Am. Chem. Soc. 2015, 137, 9555-9558.
[18] For a review on ether synthesis, see: S. Mandal, S. Mandal, S. K.
Ghosh, P. Sar, A. Ghosh, R. Saha, B. Saha, RSC Adv. 2016, 6, 69605-
69614.
[19] See the Supporting Information for more details.
[20] M. Salmón, N. Zavala, A. Cabrera, J. Cárdenas, R. Gaviño, R. Miranda,
M. Martínez, J. Mol. Catal. A: Chem. 1995, 104, L127-L129.
[21] For an example of Brønsted acid-catalysed intramolecular dehydrative
substitution with chirality transfer, see: [8e]. For recent examples of
catalytic intermolecular dehydrative subsitutions with stereochemical
inversion, see: a) E. D. Nacsa, T. H. Lambert, Org. Lett. 2013, 15, 38-
41; b) P. H. Huy, I. Filbrich, Chem. Eur. J. 2018, 24, 7410-7416; c) T.
Stach, J. Dräger, P. H. Huy, Org. Lett. 2018, 20, 2980-2983.
[22] CCDC 1871925 contains the supplementary crystallographic data for
62. These data can be obtained free of charge from The Cambridge
[23] For structural analysis of related boronate esters derived from
coordination with diacids, see: a) P. I. Paetzold, W. Scheibitz, E. Scholl,
Z. Naturforsch. B 1971, 26, 646-649; b) P. Paetzold, P. Bohm, A.
Richter, E. Scholl, Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1976,
31B, 754-764; c) W. Kliegel, U. Schumacher, S. J. Rettig, J. Trotter,
Can. J. Chem. 1992, 70, 1188-1194; (d) K. Ishihara, Y. Lu, Chem. Sci.
2016, 7, 1276-1280.
[7]
a) J. Y. Gauthier, F. Bourdon, R. N. Young, Tetrahedron Lett. 1986, 27,
15-18; b) B. G. Das, R. Nallagonda, P. Ghorai, J. Org. Chem. 2012, 77,
5577-5583; c) T. Ohshima, J. Ipposhi, Y. Nakahara, R. Shibuya, K.
Mashima, Adv. Synth. Catal. 2012, 354, 2447-2452; d) S. Biswas, J. S.
M. Samec, Chem. Asian J. 2013, 8, 974-981; e) A. K. Maity, P. N.
Chatterjee, S. Roy, Tetrahedron 2013, 69, 942-956; f) G. Sathaiah, A.
C. Shekhar, A. R. Kumar, K. Raju, P. S. Rao, M. Sridhar, B. Narsaiah,
Chem. Lett. 2013, 42, 1522-1524; g) P. Khedar, K. Pericherla, A.
Kumar, Synlett 2014, 25, 515-518; h) B. V. Rokade, K. Gadde, K. R.
Prabhu, Eur. J. Org. Chem. 2015, 2015, 2706-2717; i) H. Hikawa, Y.
Ijichi, S. Kikkawa, I. Azumaya, Eur. J. Org. Chem. 2017, 2017, 465-468;
j) M. Liang, S. Zhang, J. Jia, C.-H. Tung, J. Wang, Z. Xu, Org. Lett.
2017, 19, 2526-2529.
[8]
a) R. Sanz, A. Martínez, D. Miguel, J. M. Álvarez‐Gutiérrez, F.
Rodríguez, Adv. Synth. Catal. 2006, 348, 1841-1845; b) M. Rueping, U.
Uria, M.-Y. Lin, J. Am. Chem. Soc. 2011, 133, 3732-3735; c) F. Han, L.
Yang, Z. Li, C. Xia, Adv. Synth. Catal. 2012, 354, 1052-1060; d) E.
Barreiro, A. Sanz‐Vidal, E. Tan, S. H. Lau, T. D. Sheppard, S.
Díez‐González, Eur. J. Org. Chem. 2015, 2015, 7544-7549; e) A. Bunrit,
C. Dahlstrand, S. K. Olsson, P. Srifa, G. Huang, A. Orthaber, P. J. R.
Sjöberg, S. Biswas, F. Himo, J. S. M. Samec, J. Am. Chem. Soc. 2015,
137, 4646-4649.
[24] It is likely that in solution, boronate ester 62 is coordinated with d6-
DMSO in place of H2O.
[25] In d3-MeNO2 the three boron-containing species are present in an
approximate 7:7:1 ratio at equilibrium, as determined by 19F{1H} NMR
spectroscopic analysis. The addition of water, which is formed during
the etherification process, does not affect the position of equilibrium.
[26] For calculated and experimental 11B NMR chemical shifts of various
organoboron compounds, see: H. S. Rzepa, S. Arkhipenko, E. Wan, M.
T. Sabatini, V. Karaluka, A. Whiting, T. D. Sheppard, J. Org. Chem.,
2018, 83, 8020-8025.
[9]
D. G. Hall in Boronic Acids: Preparation and Applications in Organic
Synthesis, Medicine and Materials, Vol. 2, Wiley-VCH Verlag GmbH &
Co. KGaA, Weinheim, 2011.
[10] For reviews on organoboron acids as catalysts, see: a) K. Ishihara, H.
Yamamoto, Eur. J. Org. Chem. 1999, 1999, 527-538; b) I. Georgiou, G.
Ilyashenko, A. Whiting, Acc. Chem. Res. 2009, 42, 756-768; c) E.
Dimitrijević, M. S. Taylor, ACS Catal. 2013, 3, 945-962.
[27] C. Bergquist, B. M. Bridgewater, C. J. Harlan, J. R. Norton, R. A.
Friesner, G. Parkin, J. Am. Chem. Soc. 2000, 122, 10581-10590.
[28] We thank the reviewers for insightful suggestions regarding the catalyst
speciation and reaction mechanism.
[11] a) J. A. McCubbin, H. Hosseini, O. V. Krokhin, J. Org. Chem. 2010, 75,
959-962; b) J. A. McCubbin, O. V. Krokhin, Tetrahedron Lett. 2010, 51,
2447-2449.
[29] Attempts to characterise the trigonal complex formed between
pentafluorophenyl boronic acid 3 and oxalic acid 8 in non-coordinating
solvents such as CHCl3 or CD2Cl2 were unsuccessful due poor
solubility.
[12] a) X. Mo, J. Yakiwchuk, J. Dansereau, J. A. McCubbin, D. G. Hall, J.
Am. Chem. Soc. 2015, 137, 9694-9703; b) C. L. Ricardo, X. Mo, J. A.
McCubbin, D. G. Hall, Chem. Eur. J. 2015, 21, 4218-4223.
[13] E. Wolf, E. Richmond, J. Moran, Chem. Sci. 2015, 6, 2501-2505.
[14] H. Zheng, S. Ghanbari, S. Nakamura, D. G. Hall, Angew. Chem. Int. Ed.
2012, 51, 6187-6190; Angew. Chem. 2012, 124, 6291-6294.
[30] The data underpinning this research can be found at DOI:
[15] H. Zheng, M. Lejkowski, D. G. Hall, Chem. Sci. 2011, 2, 1305-1310.
This article is protected by copyright. All rights reserved.