3766
P. Srihari et al. / Tetrahedron Letters 50 (2009) 3763–3766
Smith, G. F. Heterocyclic Chemistry, 3rd ed.; Chapman & Hall: New York, 1995.
Chapter 17.
aniline is treated with aldehyde in the presence of acid, an iminium
ion intermediate is formed which is attacked by an electron rich in-
dole to get the 3-substituted indole (Scheme 2).
In conclusion, efficient synthesis of novel 3-substituted indoles
has been achieved by a one-pot three-component coupling reac-
tion of aldehyde, N-methylaniline and indole. Simple reaction pro-
cedures, inexpensive catalysts and single product formation make
this an attractive protocol over the existing procedures.
6. (a) Srihari, P.; Reddy, J. S. S.; Bhunia, D. C.; Mandal, S. S.; Yadav, J. S. Synth.
Commun. 2008, 38, 1448–1455; (b) Srihari, P.; Reddy, J. S. S.; Mandal, S. S.;
Satyanarayana, K.; Yadav, J. S. Synthesis 2008, 1853–1860; (c) Srihari, P.;
Mandal, S. S.; Reddy, J. S. S.; Srinivasa Rao, R.; Yadav, J. S. Chin. Chem. Lett. 2008,
767–770; (d) Yadav, J. S.; Raghavendra, S.; Satyanarayana, M.; Balanarsaiah, E.
Synlett 2005, 2461–2464.
7. Yadav, J. S.; Subba Reddy, B. V.; Srinivasa Rao, T.; Narender, R.; Gupta, M. K. J.
Mol. Catal. A: Chem. 2007, 278, 42–46.
8. The reaction also works with THF as the solvent. However the duration of the
reaction was found to be high (48 h with 80% yield) at rt.
Acknowledgements
9. General procedure for multicomponent coupling reaction: Solvent-free procedure:
A mixture of aldehyde (1 mmol), N-methyl aniline (2 mmol)12 and PMA–SiO2
(5 mol %) was stirred at rt for 1 h and to this was added indole (1 mmol) and
the reaction mixture was stirred till the completion of the reaction. The
reaction mixture was diluted with diethyl ether and filtered over a sintered
funnel. The filtrate was concentrated and the resulting product was purified by
column chromatography. Procedure with solvent (acetonitrile): To a mixture of
aldehyde (1 mmol), N-methyl aniline (2 mmol) in acetonitrile (5 mL) was
added PMA–SiO2 (5 mol%) and the reaction mixture was stirred at rt for 1 h. To
this was added indole (1 mmol) and the reaction mixture was stirred till the
completion of the reaction. The reaction mixture was filtered over a sintered
funnel. The filtrate was concentrated and the resulting product was purified by
column chromatography.
V.K.S. thanks UGC, New Delhi, and D.C.B. thanks CSIR, New Del-
hi, for financial assistance.
Supplementary data
Supplementary data (spectroscopic data of products 2a–5a, 7a
and 9a–13a) associated with this article can be found, in the online
10. Analytical data for few representative compounds: [(1H-Indol-3-yl)-phenyl-
methyl]-methyl-phenyl-amine (1a): Brown solid, mp = 145–147 °C. 1H NMR
(200 MHz, CDCl3): d 2.76 (s, 3 H), 5.54 (s, 1H), 6.51(d, J = 8.3 Hz, 3H), 6.09–7.04
(m, 3H), 7.09–7.38 (m, 9H), 7.81(s, 1H). 13C NMR (75 MHz, CDCl3): d 29.66,
47.91, 110.93, 112.37, 119.17 120.48, 121.86, 123.92,125.89, 127.03,128.11,
128.88, 129.65, 132.91, 136.65, 144.67, 147.52. IR (KBr): 453, 600, 738, 1450,
1611, 2855, 2923, 3417, 3361 cmÀ1. ESIMS:m/z 313(M++H). HRMS. calcd for
C22H21N2: 313.1704. Found 313.1701. [(Cyclohexyl-(1H-indol-3-yl)-methyl]-
methyl-phenyl-amine (6a): Brown solid mp = 110–112 °C. 1H NMR (200 MHz,
CDCl3): d.819–1.02 (m, 2 H), 1.05–1.32 (m, 3H), 1.47–1.80 (m, 4H), 2.65 (s, 3H),
3.65 (d, J = 9.5 Hz, 1H), 4.05 (dd, J = 7.3, 13.9 Hz, 1H), 6.36 (d, J = 8.8 Hz, 2H),
6.76 (m, 2H), 6.88–7.07 (m, 6H), 7.44–7.55 (m, 2H). 13C NMR (75 MHz, CDCl3):
d 48.89, 26.59, 30.81, 31.99, 32.46, 42.51, 48.89, 110.89, 118.80, 119.35, 119.82,
127.54, 128.91, 133.82, 147.01. IR (KBr): 422, 745, 1452, 1571, 1614, 2850,
References and notes
1. For recent reviews on multicomponent reactions see: (a) Domling, A. Chem.
Rev. 2006, 106, 17–19; (b) Ramon, D. J.; Yus, M. Angew. Chem., Int. Ed. 2005, 44,
1602–1634; (c) Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168; (d)
Tejedor, D.; Garcia-Tellado, F. Chem. Soc. Rev. 2007, 36, 484–491; (e) Hulme, C.;
Gore, J. Curr. Med. Chem. 2003, 10, 51–80; (f) Orru, R. V. A.; De Greef, M.
Synthesis 2003, 1471–1499; (g) Jacobi von Wangelin, A.; Neumann, H.; Gordes,
D.; Klaus, S.; Strubing, D.; Beller, M. Chem. Eur. J. 2003, 9, 4286–4294; (h) Nair,
V.; Rajesh, C.; Vinod, A. U.; Bindu, S.; Sreekanth, A. R.; Mathen, J. S.; Balagopal, L.
Acc. Chem. Res. 2003, 36, 899–907; (i) Zhu, J. Eur. J. Org. Chem. 2003, 1133–1144;
(j) Simon, C.; Constantieux, T.; Rodriguez, J. Eur. J. Org. Chem. 2004, 4957–4980;
(k) Tempest, P. Curr. Opin. Drug Discovery Dev. 2005, 8, 776–788.
2923, 3051, 3414 cmÀ1
.
ESIMS: m/z 319(M++H) HRMS calcd for
2. (a) Dondoni, A.; Massi, A.; Sabbatini, S.; Bertolasi, V. J. Org. Chem. 2002, 67,
6979–6994; (b) Lin, C.; Fang, H.; Tu, Z.; Liu, J.-T.; Yao, C.-F. J. Org. Chem. 2006,
71, 6588–6591; (c) Evdokimov, N. M.; Magedov, I. V.; Kireev, A. S.; Kornienko,
A. Org. Lett. 2006, 8, 899–902; (d) Dardennes, E.; Kovacs-Kulyassa, A.; Boisbrun,
M.; Petermann, C.; Laronze, J.-Y.; Sapi, J. Tetrahedron: Asymmetry 2005, 16,
1329–1339; (e) Dardennes, E.; Kovacs-Kulyassa, A.; Renzetti, A.; Sapi, J.;
Laronze, J.-Y. Tetrahedron Lett. 2003, 44, 221–223.
3. (a) Renzetti, A.; Dardennes, E.; Fontana, A.; De Maria, P.; Sapi, J.; Gerard, S. J.
Org. Chem. 2008, 73, 6824–6827; For earlier work on condensation of indoles
with aldehydes and secondary amines to get substituted indoles see: (b)
Snyder, A. J. Am. Chem. Soc. 1959, 81, 2239–2241; (c) Bickert, E.; Funck, T. Chem.
Ber. 1964, 97, 363–371; (d) Hogan, I.; Jenkins, P. D.; Sainsbury, M. Tetrahedron
1990, 46, 2943–2964.
4. (a) Jiang, B.; Yang, C.-G.; Wang, J. J. Org. Chem. 2001, 66, 4865–4869; (b) Zhang,
H.; Larock, R. C. Org. Lett. 2001, 3, 3083–3086; (c) Sakagami, M.; Muratake, H.;
Natsume, M. Chem. Pharm. Bull. 1994, 42, 1393–1398; (d) Fukuyama, T.; Chen,
X. J. Am. Chem. Soc. 1994, 116, 3125–3126.
5. (a) Comins, D. L.; Stroud, E. D. Tetrahedron Lett. 1986, 27, 1869–1872; (b) Wang,
Y.-Q.; Song, J.; Hong, R.; Li, H.; Deng, L. J. Am. Chem. Soc. 2006, 128, 8156–8157;
(c) Jia, Y.-X.; Xie, J.-H.; Duan, H.-F.; Wang, L.-X.; Zhou, Q.-L. Org. Lett. 2006, 8,
1621–1624; (d) Sundberg, R. J. Indoles; Academic Press: New York, 1996.
Chapter 11; (e) Wynne, J. H.; Stalick, W. M. J. Org. Chem. 2002, 67, 5850–5853;
(f) Mi, X.; Luo, S.; He, J.; Cheng, J.-P. Tetrahedron Lett. 2004, 45, 4567–4570.; (g)
Ottoni, O.; Neder, A. V. F.; Bias, A. K. B.; Cruz, R. P. A.; Aquino, L. B. Org. Lett.
2001, 3, 1005–1007; (h) Smith, A. B., III; Kanoh, N.; Minakawa, N.; Rainier, J. D.;
Blasé, F. R.; Hartz, R. A. Org. Lett. 1999, 1, 1263–1266; (i) Joule, J. A.; Mills, K.;
C22H27N2,329.2174. Found 329.1644. [(1H-Indol-3-yl)-naphth-2-yl-methyl]-
methyl-phenyl)-amine (8a): Brown solid mp = 75–80 °C. 1H NMR (300 MHz,
CDCl3): d 2.81 (s, 3 H), 6.27 (s, 1H), 6.41 (d, J = 2.1 Hz, 1H), 6.54 (d, J = 8.5 Hz,
2H), 6.87- 7.17 (m, 4H), 7.20–7.42 (m, 6H), 7.65–7.86 (m, 3H), 8.05 (d,
J = 7.9 Hz, 1H). 13C NMR (75 MHz, CDCl3): d 50.38, 63.30, 130.47, 131.94,
138.75, 139.39, 139.96, 141.44, 143.93, 144.09, 144.72, 144.88, 145.31, 146.14,
146.40, 146.54, 148.06, 149.40, 151.40, 151.97, 153.39, 156.81, 159.79, 167.06.
IR (KBr): 486, 743, 788, 1092, 1453, 1515, 1612, 2922, 3048, 3412 cmÀ1. ESIMS:
m/z 362(M++H). HRMS calcd for C26H23N2,363.1861 Found 363.1850. [(4-
Chlorophenyl)-(5-methyloxy-1H-indol-3-yl)-methyl]-methyl-phenyl)-amine
(14a): Brown solid mp = 129–131 °C. 1H NMR (300 MHz, CDCl3): d 2.82 (s, 3H),
3.65 (s, 3H), 5.43 (s, 1H), 6.45–6.52 (m, 4H), 6.72–6.76 (m, 2H), 6.94 (d,
J = 8.3 Hz, 2H), 7.10–7.24 (m, 6H), 7.27 (s, 1H). 13C NMR (75 MHz, CDCl3): d
21.21, 31.10, 47.70, 55.98, 102.28, 111.78, 112.01, 112.57, 120.55, 124.86,
127.71, 135.48, 128.96, 129.02, 129.81, 132.03, 133.30, 141.84, 147.71, 153.77.
IR (KBr): 467, 818, 926, 1091, 1206, 1459, 1616, 1745, 2855, 2924, 3189, 3369
ESIMS: m/z 377(M++H). HRMS calcd for C23H22ClN2O 377.1420 Found
377.1410.
11. Cinnamaldehyde gave mixture of unidentified spots with no desired product,
whereas both n-octanal and n-butyraldehyde gave the corresponding
bisindolyl alkanes in 60% yield.
12. Excess amine was used for allowing the complete consumption of aldehyde
to give iminium ion leading to the formation of the desired product rather
than the bisindolyl alkanes which may result from the free aldehyde if
present.