COMMUNICATIONS
[14] Y. Ohashi in Reactivity in Molecular Crystals (Ed.: Y. Ohashi), VCH,
Weinheim, 1993.
[15] M. Hofmann, U. Zenneck in Phosphorus-Carbon Heterocyclic Chem-
istry: The Rise Of A New Domain (Ed.: F. Mathey), Elsevier Science,
Amsterdam, 2001, p. 170.
[16] U. Zenneck, Angew. Chem. 1990, 102, 171; Angew. Chem. Int. Ed.
Engl. 1990, 29, 126; D. Hu, H. Sch‰ufele, H. Pritzkow, U. Zenneck,
Angew. Chem. 1989, 101, 929; Angew. Chem. Int. Ed. Engl. 1989, 28,
900; D. Hu, PhD thesis, Universit‰t Heidelberg, 1990.
[28] L. Brammer, B. J. Dunne, M. Green, G. Moran, A. G. Orpen, C.
Reeve, C. J. Schaverien, J. Chem. Soc. Dalton 1993, 1747.
[29] P. B. Hitchcock, M. J. Maah, M. Green, J. F. Nixon, J. Organometal.
Chem. 1994, 466, 153.
[30] F. Knoch, S. Kummer, U. Zenneck, Synthesis 1996, 265.
[31] M. Scheer, personal communication, M. Schiffer, PhD thesis, Uni-
versit‰t Karlsruhe, 2000, p. 78.
[32] P. B. Hitchcock, C. Jones, J. F. Nixon, Angew. Chem. 1994, 106, 478;
Angew. Chem. Int. Ed. Engl. 1994, 33, 463.
[17] E. J. Miller, T. B. Brill, A. L. Reingold, W. C. Fulz, J. Am. Chem. Soc.
1983, 105, 7580; U. Englert, B. Ganter, T. Wagner, W. Kl‰ui, Z. Anorg.
Allg. Chem. 1998, 624, 970.
[33] SHELXTL NT 5.10, Bruker AXS, 1998, Madison, WI, USA.
[18] M. Driess, J. Aust, K. Merz, C. van W¸llen, Angew. Chem. 1999, 111,
3967; Angew. Chem. Int. Ed. 1999, 38, 3677.
[19] Gaussian98 (RevisionA.7), M. J. Frisch, G. W. Trucks, H. B. Schlegel,
G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A.
Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M.
Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi,
V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo,
S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K.
Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B.
Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J.
Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C.
Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen,
M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A.
Pople, Gaussian, Inc., Pittsburgh, PA, 1998.
Enantioselective Stereoinversion in the Kinetic
Resolution of rac-sec-Alkyl Sulfate Esters by
Hydrolysis with an Alkylsulfatase from
Rhodococcus ruber DSM 44541 Furnishes
Homochiral Products**
Mateja Pogorevc, Wolfgang Kroutil,
Sabine R. Wallner, and Kurt Faber*
[20] a) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys.
Chem. 1994, 98, 11623 11627; b) A. D. Becke, J. Chem. Phys. 1993,
98, 1372 1377; c) A. D. Becke, J. Chem. Phys. 1993, 98, 5648 5652;
d) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785 789.
[21] a) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270 283; b) W. R.
Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284 298; c) P. J. Hay, W. R.
Wadt, J. Chem. Phys. 1985, 82, 299 310; d) T. H. Dunning, Jr., P. J.
Hay in Modern Theoretical Chemistry, Vol. 3 (Ed.: H. F. Schaefer III),
Plenum, New York, 1976, p. 1.
Sulfatases catalyze the hydrolytic cleavage of the sulfate
ester bond by liberating inorganic sulfate and the correspond-
ing alcohol.[1] Depending on the nature of the enzyme and its
catalytic mechanism, enzymatic hydrolysis of sec-alkyl sul-
ꢁ
fates may proceed through retention–by cleavage of the S O
ꢁ
bond–or inversion–by the cleavage of the C O bond–of
configuration at the chiral carbon atom (Scheme 1).[2,3]
[22] a) S. Huzinaga, Gaussian Basis Sets for Molecular Calculations,
Elsevier, Amsterdam, 1984; b) K. Raghavachari, G. W. Trucks, J.
Chem. Phys. 1989, 91, 1062 1065.
[23] K. B. Wiberg, Tetrahedron 1968, 24, 1083 1096.
[24] P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. v. E. Hommes,
J. Am. Chem. Soc. 1996, 118, 6317 6318.
[25] A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83,
735 746.
[26] A. S. Weller, C. D. Andrews, A. D. Burrows, M. Green, J. M. Lynam,
M. F. Mahon, C. Jones, Chem. Commun. 1999, 2147.
Scheme 1. Stereochemical pathways of enzymatic sulfate ester hydrolysis.
[27] Crystal data for 8: (C26H46MoO2P4), Mr ¼ 610.45, triclinic, space group
ꢀ
The ability of sec-alkylsulfatases to effect stereoinversion
during catalysis makes them prime candidates for their
application in so-called enantioconvergent processes,[4] which
allow the enantioselective transformation of enantiomers by
opposite stereochemical pathways to furnish a single stereo-
isomeric product in 100% theoretical yield. Other enzymes,
which potentially show this ability are a) epoxide hydrolases,[5]
b) dehalogenases,[6] and c) glycosidases.[7] A limited number of
alkylsulfatases have been biochemically characterized[1] but to
date, these enzymes have not been applied to preparative
biotransformations.[8]
P1; cell parameters a ¼ 10.116(5), b ¼ 11.312(5), c ¼ 13.960(6) ä; a ¼
77.17(4); b ¼ 89.52(4); g ¼ 87.07(4)8; V¼ 1556(2) ä3; Z ¼ 2; 1calcd
¼
1.303 gcmꢁ3; m ¼ 0.647 mmꢁ1; F(000) ¼ 640. Measurements taken on
an automatic four circle diffractometer (Nicolet R3m/V, graphite
monochromatized MoKa-radiation, l ¼ 0.71073 ä) at 298 K in the 2q-
range from 3.70 to 54.008. 6790 symmetry-independent reflections.
The structure was solved as for 4, R1 ¼ 0.0479 (for 4782 reflections with
F0 ꢃ 4.0s(F)), wR2 ¼ 0.1179 (for all data). The position of the H atom
bonded to P3 was obtained from a difference-Fourier analysis. All
other hydrogen atoms are positioned according to geometrical
considerations. Crystal data for 9: (C34H66MoO2P4), Mr ¼ 726.69,
orthorhombic, space group Pbca; cell parameters a ¼ 14.4264(4), b ¼
20.6977(3), c ¼ 25.7650(6) ä; V¼ 7693.3(3) ä3; Z ¼ 8; 1calcd
¼
1.255 gcmꢁ3; m ¼ 0.534 mmꢁ1; F(000) ¼ 3104. Measurements taken on
a
Nonius KappaCCD (MoKa radiation, l ¼ 0.71073 ä, graphite
monochromator) at 100 K in the 2q-range from 6.78 to 64.08. 13322
symmetry-independent reflections. The structure was solved as for 4,
R1 ¼ 0.0445 (for 8044 reflections with F0 ꢃ 4.0s(F)), wR2 ¼ 0.0923 (for
all data). The position of all H atoms could be obtained from a
difference-Fourier analysis. CCDC-184253 (8) and CCDC-184254 (9)
contains the supplementary crystallographic data for this paper. These
retrieving.html (or from the Cambridge Crystallographic Data Centre,
12, Union Road, Cambridge CB21EZ, UK; fax: (þ 44)1223-336-033;
or deposit@ccdc.cam.ac.uk).
[*] Prof. Dr. K. Faber, Mag. Dr. M. Pogorevc, Dipl.-Ing. Dr W. Kroutil,
Mag. S. R. Wallner
Department of Organic and Bioorganic Chemistry
University of Graz
Heinrichstrasse 28, 8010 Graz (Austria)
Fax : (þ 43)316-380-9840
E-mail: Kurt.Faber@uni-graz.at
[**] We thank Degussa AG (Frankfurt) for financial support and T.
Riermeier and H. Trauthwein for their valuable contributions.
4052
¹ 2002 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
0044-8249/02/4121-4052 $ 20.00+.50/0
Angew. Chem. Int. Ed. 2002, 41, No. 21