Schrock, J. Am. Chem. Soc., 1997, 119, 3830; L.-C. Liang, R. R.
Schrock and W. M. Davis, Organometallics, 2000, 19, 2526.
6 L. H. Gade, Chem. Commun., 2000, 173.
7 G. Mund, R. J. Batchelor, R. D. Sharma, C. H. W. Jones and D. B.
Leznoff, J. Chem. Soc., Dalton Trans., 2002, 136.
8 D. B. Leznoff, G. Mund, K. C. Jantunen, P. H. Bhatia, A. J. Gabert and
R. J. Batchelor, J. Nucl. Sci. Technol., 2002, in press.
9 A. J. Elias, H. W. Roesky, W. T. Robinson and G. M. Sheldrick, J.
Chem. Soc., Dalton Trans., 1993, 495; A. J. Elias, H.-G. Schmidt, M.
Noltemeyer and H. W. Roesky, Eur. J. Solid State Inorg. Chem., 1992,
29, 23.
10 J. C. Barnes and J. D. Paton, Acta Crystallogr., Sect. C, 1984, 40, 72; X.
Lei, M. Shang and T. P. Fehlner, Polyhedron, 1997, 16, 1803; R. D.
Rogers, A. H. Bond and J. L. Wolff, J . Coord. Chem., 1993, 29, 187;
R. Iwamoto and H. Wakano, J. Am. Chem. Soc., 1976, 98, 3764.
11 R. Koerner, M. M. Olmstead, A. Ozarowski and A. L. Balch, Inorg.
Chem., 1999, 38, 3262; J. R. Gardinier and F. P. Gabbaï, J. Chem. Soc.,
Dalton Trans., 2000, 2861; T. Gröb, G. Seybert, W. Massa, F. Weller,
R. Palaniswami, A. Greiner and K. Dehnicke, Angew. Chem., Int. Ed.,
2000, 39, 4373; R. Crescenzi, E. Solari, C. Floriani, A. Chiesi-Villa and
C. Rizzoli, Inorg. Chem., 1999, 35, 2413; O. Fuhr and D. Fenske, Z.
Anorg. Allg. Chem., 2000, 626, 1822.
12 M. Döring, G. Hahn, M. Stoll and A. C. Wolski, Organometallics, 1997,
16, 1879.
13 A. Herzog, F.-Q. Liu, H. W. Roesky, A. Demsar, K. Keller, M.
Noltemeyer and F. Pauer, Organometallics, 1994, 13, 1251.
14 F. A. Cotton, E. V. Dikarev and S.-E. Stiriba, Inorg. Chem., 1999, 38,
4877.
Fig. 3 Plots of magnetic moment (meff) vs. temperature (K) for 1, 2 and 4.
observed in amido-bridged 1 and 2 vs. ether-bridged 4 is likely
the result of the much shorter metal–metal distances that are
supported by amido-bridges. Importantly, 3 shows minimal
coupling, implying that this carbon-containing [NON] ligand
system still appears to form an ether-bridged dimer as opposed
to an amido-bridged one, despite having the same amido R-
group as 1. Below 20 K, the sharp drop in meff is attributable to
zero-field splitting (ZFS) effects common in Co(II) systems.
The simultaneous presence of ZFS and antiferromagnetic
coupling impeded accurate modeling of the data.21
Why do rather similar diamidoether ligands give rise to such
different metal–ligand binding motifs? The length and rigidity
alterations in the ligand backbone provide a plausible explana-
tion. The silicon-containing [NON] backbone consists of a
short, five-atom chain that is sterically hindered around the
silylether donor. Alternatively, the carbon-containing [NON]
system is two atoms longer and is sterically unhindered at the
diethyl ether donor, yielding a more flexible ligand that may be
more apt to bridge metal atoms through the ether donor. The
stronger Lewis basicity of the latter may also assist in ether-
bridging. The size of the resulting metallacycle that is formed
could also account for the unusual ether atom bridging motif.
The silylamido-bridged cobalt system gives rise to stable six-
membered rings. An amido-bridged system featuring the
carbon-containing [NON] ligand would give rise to less stable
eight-membered metallacycles; ether-bridging allows for more
stable five-membered rings to form.
15 The synthesis of {[RNH(CH2CH2)]2O} (R = 2,4,6-Me3Ph) follows the
procedure for R = 2,6-Me2Ph as described in ref 3. Yield: 1.41 g (76%).
Anal. Calc. for C22H32N2O: C: 77.60, H: 9.47, N: 8.23. Found: C: 77.48,
H: 9.23, N: 8.00%. 1H NMR (C6D6): d 6.78 (s, 4H, Haryl), 4.03 (br, 2H,
NH), 3.22 (t, 4H, OCH2), 3.01 (t, 4H, NCH2), 2.24 (s, 12H, 2,6-MeAr)
2.17 (s, 6H, 4-MeAr). MS: m/z 340 (M+).
16 Synthesis of 3: a white powder of {[(Me3PhNH(CH2CH2)]2O} (0.20 g,
0.59 mmol) was dissolved in 10 mL of THF and two equivalents of 1.6
M nBuLi in hexanes (0.12 mL, 1.18 mmol) were added dropwise at 278
°C. After stirring for 1 h at room temperature, the resulting solution was
added dropwise to anhydrous CoCl2 (0.76 g, 0.59 mmol) in 30 mL of
THF at 278 °C, yielding a dark green solution. After 1 h, the solvent
was removed in vacuo, the product was extracted with toluene and
filtered through Celite®. Removal of the toluene in vacuo gave dark
green {Co[Me3PhN(CH2CH2)]2O}2 (3). Yield: 0.12 g (56%). Anal.
Calc. for C44H60N4Co2O2: C: 66.49, H: 7.61, N: 7.05. Found: C: 66.58,
H: 7.51, N: 6.94%. UV-vis (C7H8): l = 579 nm (e = 118 M21 cm21).
MS: m/z 397 (M+, monomer unit). For 4, a similar procedure was used.
Yield: 1.2 g (80%). Single crystals suitable for X-ray analysis were
obtained by a slow evaporation of a toluene solution. Anal. Calc. for
C56H84N4Co2O2: C: 69.82, H: 8.80, N: 5.82. Found: C: 69.62, H: 8.68,
N: 5.62%. UV-vis (C7H8): l = 422 nm (e = 98 M21 cm21). MS: m/z
481 (M+, monomer unit).
In conclusion, a series of dinuclear cobalt complexes
containing diamidoether ligands has been reported, in which an
amido-bridged system is favoured by the short, rigid silicon-
[NON] backbone whereas ether-bridging is favoured by the
longer, more flexible carbon-[NON] backbone. Further in-
vestigation of these [NON]-ligand systems with other metal
centres is underway. This new binding motif may have
implications for the use of diamidodonor ligands in alkene
polymerization catalyst design.3,5,22
17 Crystal data for 1: C44H68Co2N4O2Si4, M = 915.24, monoclinic, space
group C2/c, a = 18.132(11), b = 13.972(8), c = 19.761(12) Å, b =
107.854(10)°, V = 4765(5) Å3, Z = 4, m(Mo-Ka) = 0.8 mm21, T =
153(2) K, 3068 unique reflections, 1756 observed (Io > 2.0s(Io)). The
final R(F2) = 0.0986 and wR(F2) = 0.1868 (observed data). The sample
was a multiple crystallite. Crystal data for 4: C56H84Co2N4O2, M =
¯
931.18, triclinic, space group P1, a = 10.899(2), b = 15.104(3), c =
18.012(2) Å, a = 88.90(1), b = 84.64(2), g = 69.22(2)°, V =
2759.8(9) Å3, Z = 2, m(Mo-Ka) = 0.6 mm21, T = 293 K, 9759 unique
reflections, 4528 observed (Io > 2.5s(Io)). The final RF = 0.050 and
RwF = 0.052 (observed data). Structure solution and refinement for 4
was performed using CRYSTALS (D. J. Watkin, C. K. Prout, J. R.
Carruthers, P. W. Betteridge and R. I. Cooper, CRYSTALS Issue 11,
Chemical Crystallography Laboratory, University of Oxford, Oxford,
suppdata/cc/b2/b208221g/ for crystallographic data in CIF format.
18 M. D. Fryzuk, D. B. Leznoff, R. C. Thompson and S. J. Rettig, J. Am.
Chem. Soc., 1998, 120, 10126.
19 B. D. Murray and P. P. Power, Inorg. Chem., 1984, 23, 4584.
20 O. Kahn, Molecular Magnetism, VCH, New York, 1993.
21 J.-S. Sun, H. Zhao, X. Ouyang, R. Clérac, J. A. Smith, J. M. Clemente-
Juan, C. Gómez-Garcia, E. Coronado and K. R. Dunbar, Inorg. Chem.,
1999, 38, 5841; H. Sakiyama, R. Ito, H. Kumagai, K. Inoue, M.
Sakamoto, Y. Nishida and M. Yamasaki, Eur. J. Inorg. Chem., 2001,
2027.
We are grateful to NSERC of Canada (D. B. L.) and Simon
Fraser University for financial support.
Notes and references
1 F. G. N. Cloke, P. B. Hitchcock and J. B. Love, J. Chem. Soc., Dalton
Trans., 1995, 25; J. B. Love, H. C. Clark, F. G. N. Cloke, J. C. Green and
P. B. Hitchcock, J. Am. Chem. Soc., 1999, 121, 6843; F. Guérin, D. H.
McConville and N. C. Payne, Organometallics, 1996, 15, 5085; L.-C.
Liang, R. R. Schrock, W. M. Davis and D. H. McConville, J. Am. Chem.
Soc., 1999, 121, 5797.
2 M. D. Fryzuk, S. A. Johnson and S. J. Rettig, J. Am. Chem. Soc., 1998,
120, 11024.
3 M. Aizenberg, L. Turculet, W. M. Davis, F. Schattenmann and R. R.
Schrock, Organometallics, 1998, 17, 4795.
4 D. D. Graf, R. R. Schrock, W. M. Davis and R. Stumpf, Organome-
tallics, 1999, 18, 843.
5 N. A. H. Male, M. Thornton-Pett and M. Bochmann, J. Chem. Soc.,
Dalton Trans., 1997, 2487; R. Baumann, W. M. Davis and R. R.
22 B. L. Small, M. Brookhart and A. M. A. Bennett, J. Am. Chem. Soc.,
1998, 120, 4049; G. J. P. Britovsek, V. C. Gibson, B. S. Kimberley, P.
J. Maddox, S. J. McTavish, G. A . Solan, A. J. P. White and D. J.
Williams, Chem. Commun., 1998, 849.
CHEM. COMMUN., 2002, 2990–2991
2991