R2/R3 Subtype SelectiVe GABAA Agonists
Journal of Medicinal Chemistry, 2006, Vol. 49, No. 8 2609
Containing GABAA Receptors is a Nonsedating Anxiolytic in Rodents
and Primates. J. Pharmacol. Exp. Ther. 2006, 316, 410-422, and
references therein. (c) See also ref 6. (d) Dias, R.; Sheppard, W. F.;
Fradley, R. L.; Garrett, E. M.; Stanley, J. L.; Tye, S. J.; Goodacre,
S.; Lincoln, R. J.; Cook, S. M.; Conley, R.; Hallett, D.; Humphries,
A. C.; Thompson, S. A.; Wafford, K. A.; Street, L. J.; Castro, J. L.;
Whiting, P. J.; Rosahl, T. W.; Atack, J. R.; McKernan, R. M.;
Dawson, G. R.; Reynolds, D. S. Evidence for a significant role of
R3-containing GABAA receptors in mediating the anxiolytic effects
of benzodiazepines. J. Neurosci. 2005, 25(46), 10682-10688.
(4) Unpublished results from these laboratories. This observation is based
upon examination of more than 10 chemically distinct structural
classes. The γ2 subunit (the most abundant γ subtype in CNS), which
is held invariant in these studies, makes significant contributions to
the binding pocket. Furthermore the R subunits are highly homolo-
gous, and the modest binding selectivity achievable for R2/R3 over
R1 may be attributable to a single amino acid residue difference which
is isoleucine in R3 and valine in R1 (P. Wingrove, personal
communication). For published studies on the molecular determinants
of subtype selective binding affinity, see also: Pritchett, D. B.;
Seeburg, P. H. γ-Aminobutyric acid type A receptor point mutation
increases the affinity of compounds for the benzodiazepine site. Proc.
Natl. Acad. Sci. U.S.A. 1991, 88, 1421-1425. Korpi, E. R.; Grunder,
G.; Luddens, H.; Drug interactions at GABAA receptors. Prog.
Neurobiol. 2002, 67, 113-159.
(5) Chambers, M.; Atack, J.; Carling, R.; Collinson, N.; Cook, S.;
Dawson, G.; Ferris, P.; Hobbs, S.; O’Connor, D.; Marshall, G.;
Rycroft, W.; MacLeod, A. An Orally Bioavailable, Functionally
Selective Inverse Agonist at the Benzodiazepine Site of GABAA R5
Receptors with Cognition Enhancing Properties. J. Med. Chem. 2004,
47(24), 5829-5832 and references therein.
(6) Van Niel, M. B.; Wilson, K.; Adkins, C. H.; Atack, J. R.; Castro, J.
L.; Clarke, D. E.; Fletcher, S.; Gerhard, U.; Mackey, M. M.; Malpas,
S.; Maubach, K.; Newman, R.; O’Connor, D.; Pillai, G. V.; Simpson,
P. B.; Thomas, S. R.; MacLeod, A. M. A New Pyridazine Series of
GABAA R5 ligands. J. Med. Chem. 2005, 48, 6004-6011.
via a cannula to a solution of TMEDA (34.57 g, 297.5 mmol) in
diethyl ether (400 mL) at -78 °C, and the solution was stirred for
0.5 h. A solution of 3,5-difluoropyridine (27.39 g, 238 mmol) in
diethyl ether (100 mL) was then added via a cannula, and the
resulting mixture was stirred at -78 °C for 2 h, before adding
chlorotrimethylsilane (33 mL, 262 mmol) The solution stirred for
0.5 h and then allowed to warm to RT over 2 h. The reaction was
quenched into water (500 mL), and the organic phase was separated,
washed with 10% aqueous citric acid, water, dried (MgSO4), and
evaporated. The residue was distilled at reduced pressure to give
30 as a colorless oil (bp 62 °C @ 5 mbar), (30 g, 67%). δΗ (400
MHz, CDCl3) 8.24 (2 H, s), 0.41 (9 H).
3,5-Difluoro-4-trimethylsilanyl-2-trimethylstannanylpyri-
dine (32). To a solution of 3,5-difluoropyridine (3.0 g, 26.01 mmol)
in diethyl ether (100 mL) at -78 °C was added lithium diisopro-
pylamide (13.7 mL, 27.4 mmol, 2 M solution in THF), and the
solution was stirred for 0.5 h. Chlorotrimethylsilane (2.95 g, 3.47
mL, 27.15 mmol) was added and the solution stirred for 0.5 h and
then allowed to warm to RT and stirred for 1 h. The solution was
then cooled to -78 °C, a solution of lithium diisoproylamide (13.7
mL, 27.4 mmol, 2 M solution in THF) was added, and the solution
was stirred for 0.5 h. Trimethyltin chloride (28.7 mL, 28.7 mmol,
1 M in hexanes) was added and the solution stirred for 0.5 h and
then allowed to warm to RT over 18 h. The mixture was diluted
with isohexane (100 mL) and poured into water (200 mL). The
organic phase was washed with water (3 × 200 mL) and then dried
over MgSO4, filtered, and evaporated to give an orange oil.
Purification by distillation at reduced pressure gave a pale yellow
oil (7.4 g, 81%; bp 110 °C 1.3 mmHg). δΗ (400 MHz, CDCl3)
8.42 (1 H, s), 0.39 (9 H, s), 0.38 (9 H, s).
(7) Russell, M. G. N.; Carling, R. W.; Street, L. J.; Hallett, D. J.;
Mezzogori, E.; Atack, J. R.; Cook, S. M.; Bromidge, F. A.; Wafford,
K. A.; Marshall, G. R.; Reynolds, D. S.; Stanley, J.; Lincoln, R.;
Tye, S. J.; Sheppard, W. F. A.; Sohal, B.; Pike, A.; Dominguez, M.;
Castro, J. L. Discovery of Imidazo[1,2-b][1,2,4]triazines as GABAA
R2/3 Subtype Selective Agonists for the Treatment of Anxiety. J.
Med. Chem. 2006, 49(4), 1235-1238. (b) Carling, R. W.; Madin,
A.; Guiblin, A.; Russell, M. G. N.; Moore, K. W.; Mitchinson, A.;
Sohal, B.; Pike, A.; Cook, S. M.; Ragan, I.C.; McKernan, R. M.;
Quirk, K.; Ferris, P.; Marshall, G. R.; Thompson, S. A.; Wafford,
K. A.; Dawson, G. R.; Atack, J. R.; Harrison, T.; Castro, J. L.; Street,
L. J.; 7-(1,1-Dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-
3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b]pyridazine: A Functionally
Selective GABAA R2/R3-Subtype Selective Agonist which Exhibits
Potent Anxiolytic Activity but is Not Sedating in Animal Models. J.
Med. Chem 2005, 48, 7089-7092. (c) Goodacre, S. G.; Street, L. J.;
Hallett, D. J.; Crawforth, J. M.; Kelly, S.; Owens, A. P.; Blackaby,
W. P.; Lewis, R. T.; Stanley, J.; Smith, A. J.; Ferris, P.; Sohal, B.;
Cook, S. M.; Pike, A.; Teall, M.; Wafford, K. A.; Marshall, G. R.;
Castro, J. L.; Atack, J. R.; Imidazo[1,2-a]pyrimidines as Functionally
Selective and Orally Bioavailable GABAA R2/R3 Binding Site
Agonists for the Treatment of Anxiety Disorders. J. Med. Chem.
2006, 49(1), 35-38. (d) Jennings, A. S. R.; Lewis, R. T.; Russell,
M. G. N.; Hallett, D. J.; Crawforth, J.; Street, L. J.; Castro, J. L.;
Atack, J. R.; Cook, S. M.; Lincoln, R.; Stanley, J.; Smith, A. J.;
Reynolds, D. S.; Sohal, B.; Pike, A.; Marshall, G. R.; Wafford, K.
A. Imidazo[1,2-b][1,2,4]triazines as R2/R3 subtype selective GABAA
agonists for the treatment of anxiety. Bioorg. Med. Chem. Lett. 2006,
16(6), 1477-1480.
(8) Unpublished results from these laboratories. For example, the
hydroxydimethyl moiety of 2, a key feature of the imidazotriazine
series, was not well tolerated as a 3-substituent in the pyridazine
series: Ar ) (CH3)2COH, R) H Ki R3 226 nM.
(9) The R2 binding affinity was not routinely measured. It closely
parallels the R3 affinity for those compounds studied; 16: Ki R2
10.91 nM; Ki R3 8.5 nM and 17: Ki R2 4.6 nM; Ki R3 5.0 nM.
(10) A combination of HPLC-MS-MS. analysis of the material recovered
after incubation with rat hepatocytes.
(11) The protocol for these assays has been published elsewhere. See ref
3 and references therein for experimental protocols for rat in vivo
occupancy, plus-maze, and rotarod assays in the presence or absence
of coadministered ethanol, and primate CER.
(12) It is important to note that occupancy of all BZ receptor subtypes is
measured11 by the test compound’s ability to displace tritiated Ro
15-1788, but that the efficacy derives only from occupancy of those
native receptors containing R2 or R3 for this compound.
Acknowledgment. We thank Sarah Kelly for the synthesis
of compound 30, and Drs. Angus M MacLeod, Leslie J.
Street, Jose´ L. Castro, and Ruth M. Mckernan for useful
discussions.
Supporting Information Available: Table S1 contains analyti-
cal or accurate mass data for compounds 6-19. This material is
References
(1) Simon, J.; Wakimoto, H.; Fujita, N.; Lalande, M.; Barnard, E. A.
Analysis of the set of GABAA Receptor Genes in the Human
Genome. J Biol. Chem. 2004, 279(40), 41422-41435. (b) Atack, J.
R. The benzodiazepine binding site of GABAA receptors as a target
for the development of novel anxiolytics. Expert Opin. InVestig.
Drugs 2005, 14(5), 601-618. See also: Whiting, P. J. The GABA-A
receptor gene family: New opportunities for drug development. Curr.
Opin. Drug DiscoVery DeV. 2003, 6(5), 648-657, and references
therein. (c) The γ3 subtype is of low abundance in mammalian brain.
In this work only the γ2 subtype combination has been studied in
vitro. Knoflach, F.; Rhyner, Th.; Villa, M.; Kellenberger, S.; Drescher,
U.; Malherbe, P.; Sigel, E.; Mohler, H. The γ3-subunit of the
GABAA-receptor confers sensitivity to benzodiazepine receptor
ligands. FEBS Lett. 1991, 293(1-2), 191-194; see also: Baer, K.;
Essrich, C.; Benson, J.; Benke, D.; Bluethmann, H.; Fritschy, J.-M.;
Luscher, B. Postsynaptic clustering of γ-aminobutyric acid type A
receptors by the γ3 subunit in vivo. Proc. Natl. Acad. Sci. U.S.A.
1999, 96(22), 12860-12865.
(2) Low, K.; Crestani, F.; Keist, R.; Benke, D.; Brunig, I.; Benson, J.
A.; Fritschy, J. M.; Rulicke, T.; Bluethmann, H.; Mohler, H.;
Rudolph, U. Molecular and neuronal substrate for the selective
attenuation of anxiety. Science 2000, 290(5489), 131-134, and
references therein.
(3) McKernan, R. M.; Rosahl, T. W.; Reynolds, D. S.; Sur, C.; Wafford,
K. A.; Atack, J. R.; Farrar, S.; Myers, J.; Cook, G.; Ferris, P.; Garrett,
L.; Bristow, L.; Marshall, G.; Macaulay, A.; Brown, N.; Howell,
O.; Moore, K. W.; Carling, R. W.; Street, L. J.; Castro, J. L.; Ragan,
C. I.; Dawson, G. R.; Whiting, P. J. Nature Neurosci. 2000, 3(6),
587-592, and references therein. (b) Atack, J. R.; Wafford, K. A.;
Tye, S. J.; Cook, S. M.; Sohal, B.; Pike, A.; Sur, C.; Melillo, D.;
Bristow, L.; Bromidge, F.; Ragan, C. I.; Kerby, J.; Street, L. J.;
Carling, R. W.; Castro, J. L.; Whiting, P. J.; Dawson, G. R.;
McKernan, R. M. TP A023, An Agonist Selective for R2- and R3-