COMMUNICATIONS
Table 2. Oxidative cleavage of cyclic silanes.[a]
[6] For reviews, see: a) J. K. Crandall, M. Apparu, Org. React. 1983, 29,
345; b) D. M. Hodgson; A. R. Gibbs, G. P. Lee, Tetrahedron 1996, 52,
14361; c) P. O×Brien, J. Chem. Soc. Perkin Trans. 1 1998, 1439.
[7] For a pioneering investigation on catalytic enantioselective isomer-
ization of carbocyclic epoxides, see: M. Asami, T. Ishizaki, S. Inoue,
Tetrahedron: Asymmetry 1994, 5, 793.
[8] a) W. J. Richter, Synthesis 1982, 1102; b) S. Mignani, D. Damour, J.-P.
Bastart, G. Manuel, Syn. Commun. 1995, 25, 3855.
[9] G. Manuel, R. Boukherroub, J. Organomet. Chem. 1993, 447, 167.
[10] a) M. J. Sˆdergren, P. G. Andersson, J. Am. Chem. Soc. 1998, 120,
10760; b) M. J. Sˆdergren, S. K. Bertilsson, P. G. Andersson, J. Am.
Chem. Soc. 2000, 122, 6610.
[11] Determination of the enantiomeric excess was carried out by the
Mosher ester 1H NMR analysis; see Supporting Information for
details. The attempts to resolve alcohol 3a using six different chiral
HPLC stationary phases proved unsuccessful.
[12] The absolute configuration of silane (R)-3a was later confirmed by its
conversion to the known (S)-triol 9, as illustrated below.
Entry
1
Silane
R
R'
12
Yield [%][b]
78
(À)-11a
H
(À)-12a
2
()-11b
H
(À)-12b
76
3
4
5
()-11c
(À)-11 f
(À)-11h
H
(À)-12c
(À)-12d
(À)-12e
79
70
74
H
MOM
[a] For detailed experimental procedures and compound characterization,
see Supporting Information. [b] Refers to the yield of spectroscopically
pure product isolated after silica gel chromatography.
scaffold can be efficiently accomplished according to the
Woerpel procedure employing the use of basic tBuOOH in
DMF.[16] Several representative tetraols 12 were prepared in
good yields with complete overall diastereoselectivity illustrat-
ing the generality of this strategy (Table 2). The occurrence of
a polyol motif 12 in a number of bioactive natural products is
noteworthy. Representative examples include the side chain
portion of bacteriohopanoid.[17a] and the central macrolide
segment of herbarumin I, a highly potent phytotoxic agent.[17b]
In summary, we have demonstrated a highly enantioselec-
tive catalytic isomerization of silacyclopentene oxide, a
pivotal point in our strategy for the stereoselective assembly
of acyclic polyols. Development of an arsenal of new
asymmetric processes utilizing cyclic silanes is currently in
progress.
[13] K. Tamao, E. Nakajo, Y. Ito, J. Org. Chem. 1987, 52, 4414.
[14] K. Tamao, M. Kumada, K. Maeda, Tetrahedron Lett. 1984, 321.
[15] I. Fleming, P. E. Sanderson, Tetrahedron Lett. 1987, 28, 4229.
[16] J. H. Smitrovich, K. A. Woerpel, J. Org. Chem. 1996, 61, 6044.
[17] a) N. Zhao, N. Berova, K. Nakanishi, M. Rohmer, P. Mougenot, U. J.
Jurgens, Tetrahedron 1996, 52, 2777; b) J. F. River-Cruz, G. Garcia-
Aguirre, C. M. Cerda-Garcia-Rojas, R. Mata, Tetrahedron 2000, 56,
5337.
The First Catalytic, Diastereoselective, and
Enantioselective Crossed-Aldol Reactions of
Aldehydes**
Received: September 6, 2001 [Z17864]
[1] a) T.-L. Ho, Symmetry: A Basis for Synthetic Design, Wiley, New
York, 1995; b) R. S. Ward, Chem. Soc. Rev. 1990, 19, 1; c) M. C. Wills,
J. Chem. Soc. Perkin Trans. 1 1999, 1765.
Scott E. Denmark* and Sunil K. Ghosh
[2] For selected examples of catalytic enantioselective desymmetriza-
tions, see: a) S. L. Schreiber, T. S. Schreiber, D. B. Smith, J. Am. Chem.
Soc. 1987, 109, 1525; b) W. A. Nugent, J. Am. Chem. Soc. 1992, 114,
2768; c) L. E. Martinez, J. L. Leighton, D. H. Carsten, E. N. Jacobsen,
J. Am. Chem. Soc. 1995, 117, 5897; d) T. Iida, N. Yamamoto, H. Sasai,
M. Shibasaki, J. Am. Chem. Soc. 1997, 119, 4783; e) M. Lautens, T.
Rovis, J. Am. Chem. Soc. 1997, 119, 11090; f) S. E. Denmark, P. A.
Barsanti, K. T. Wong, R. A. Stavenger, J. Org. Chem. 1998, 63, 2428;
g) T. Oriyama, K. Imai, T. Sano, T. Hosoya, Tetrahedron Lett. 1998, 39,
397; h) S. L. Aeilts, D. R. Cefalo, P. J. Bonitatebus, J. H. Houser, A. H.
Hoveyda, R. R. Schrock, Angew. Chem. 2001, 113, 1500; Angew.
Chem. Int. Ed. 2001, 40, 1452.
[3] For the use of cyclic siloxanes in stereoselective synthesis, see: a) K.
Tamao, T. Nakajima, R. Sumiiya, H. Arai, N. Higuchi, Y. Ito, J. Am.
Chem. Soc. 1986, 108, 6090; b) S. H. Bergens, P. Noheda, J. Whelan, B.
Bosnich, J. Am. Chem. Soc. 1992, 114, 2121; c) M. R. Hale, A. H.
Hoveyda, J. Org. Chem. 1992, 57, 1643; d) M. J. Zacuto, J. L. Leighton,
J. Am. Chem. Soc. 2000, 122, 8587; For the use of siliranes, see: e) P. M.
Bodnar; W. S. Palmer, J. T. Shaw, J. H. Smitrovich, J. D. Sonnenberg,
A. L. Presley, K. A. Woerpel, J. Am. Chem. Soc. 1995, 117, 10575, and
references therein.
The apotheosis of the aldol addition reaction is one of the
most well-documented chapters of modern organic synthesis;
the generality, versatility, and selectivity associated with this
process have been the subject of countless reviews and
authoritative summaries. Stimulated by the challenge posed
by nature, a generation of synthetic organic chemists has
constructed an impressive edifice of knowledge which con-
stitutes insightful, elegant, and practical solutions to the
structural and stereochemical problems presented by poly-
propionate-derived natural products. Yet, at this advanced
vantage, it is remarkable that the most basic of aldol
[*] Prof. Dr. S. E. Denmark, Dr. S. K. Ghosh
Department of Chemistry, University of Illinois
Urbana, IL 61801 (USA)
Fax : (1)217-333-3984
[**] We are grateful to the National Science Foundation for generous
financial support (NSF CHE 9803124).
[4] For reviews on preparation and properties of cyclic silanes, see: a) J.
Hermanns, B. Schmidt, J. Chem. Soc. Perkin. Trans. 1 1998, 2209; b) J.
Hermanns, B. Schmidt, J. Chem. Soc. Perkin. Trans. 1 1999, 81.
[5] J. K. Whitesell, S. W. Felman, J. Org. Chem. 1980, 45, 755.
Supporting information for this article is available on the WWW under
Angew. Chem. Int. Ed. 2001, 40, No. 24
¹ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4024-4759 $ 17.50+.50/0
4759