A. K. Gupta et al. / Tetrahedron Letters 53 (2012) 2218–2221
2221
7. (a) Orrling, K.; Nilsson, P.; Gullberg, M.; Larhed, M. Chem. Commun. 2004, 790–
791; (b) Zhong, H.; Zhang, Y.; Wen, Z.; Li, L. Nat. Biotechnol. 2004, 22, 1291–
1296; (c) Zhong, H.; Marcus, S. L.; Li, L. J. Am. Soc. Mass Spectrom. 2005, 16, 471–
481.
8. (a) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337–2364;
(b) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007,
107, 5318–5365; (c) Corbert, J. P.; Mignani, G. Chem. Rev. 2006, 106, 2651–
2710; (d) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400–5449.
9. (a) Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem. 2005, 70, 5164–5173; (b) Ma, D.; Cai,
Q. Acc. Chem. Res. 2008, 41, 1450–1460; (c) Xia, N.; Taillefer, M. Angew. Chem.,
Int. Ed. 2009, 48, 337–339; (d) Buchwald, S. L.; Bolm, C. Angew. Chem., Int. Ed.
2009, 48, 5586–5687; (e) Strieter, E. R.; Bhayana, B.; Buchwald, S. L. J. Am. Chem.
Soc. 2009, 131, 78–88.
10. (a) Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. J. Org. Chem. 2002, 67,
5553–5566; (b) Buchwald, S. L.; Mauger, C.; Mignani, G.; Scholz, U. Adv. Synth.
Catal. 2006, 348, 23–39; (c) Anderson, K. W.; Tundel, R. E.; Ikawa, T.; Altman, R.
A.; Buchwald, S. L. Angew. Chem., Int. Ed. 2006, 45, 6523–6527; (d) Shen, Q.;
Hartwig, J. F. J. Am. Chem. Soc. 2007, 129, 7734–7735.
11. Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 6054–6058.
12. (a) Brenner, E.; Fort, Y. Tetrahedron Lett. 1998, 39, 5359–5362; (b) Brenner, E.;
Schneider, R.; Fort, Y. Tetrahedron 1999, 55, 12829–12842; (c) Desmarates, C.;
Schneider, R.; Fort, Y. Tetrahedron Lett. 2000, 41, 2875–2879; (d) Gradel, B.;
Brenner, E.; Schneider, R.; Fort, Y. Tetrahedron Lett. 2001, 42, 5689–5692; (e)
Brenner, E.; Schneider, R.; Fort, Y. Tetrahedron 2002, 58, 6913–6924; (f)
Desmarates, C.; Schneider, R.; Fort, Y. J. Org. Chem. 2002, 67, 3029–3036; (g)
Chen, C.; Yang, L.-M. Org. Lett. 2005, 7, 2209–2211; (h) Kuhl, S.; Fort, Y.;
Schneider, R. J. Organomet. Chem. 2005, 690, 6169–6177; Gao, C.-Y.; Yang, M.-L.
J. Org. Chem. 2008, 73, 1624–1627; (j) Beletskaya, I. P.; Ananikov, V. P. Chem.
Rev. 2011, 111, 1596–1636.
in the reaction (Table 2, entries 11–16). The role of various aryl ha-
lides was also examined in the reaction using aniline as counter-
substrate and it was found that iodobenzene is more reactive than
bromobenzene. Chlorobenzene being reluctant, showed some
reactivity under harsh reaction conditions (Table 2, entry 1–11);
albeit, chloroderivatives with electron withdrawing groups readily
couple in the reaction (Table 2, entries 20 and 21).
It is worthwhile to note that the catalyst NiCl2ꢀ6H2O being
insoluble in the reaction mixture is easily recovered by simple fil-
tration and is reused three times without any significant diminu-
tion in its amount and activity (Table 2, entry 2).
In summary, we have developed a convenient, rapid, economi-
cal and environmentally friendly Ni(II) catalyzed protocol for the
N-arylation of amines with aryl halides under microwave irradia-
tion. The key features of the reaction are (1) solvent-free conditions
(2) no ligand needed (3) recoverable and recyclable catalyst (4) no
need of inert atmosphere and (5) very short reaction time and
operational simplicity.
Acknowledgment
We are thankful to the Department of Biotechnology, New Delhi
for financial assistance.
13. (a) Allam, B. K.; Singh, K. N. Tetrahedron Lett. 2011, 52, 5851–5854; (b)
Raghuvanshi, D. S.; Singh, K. N. Tetrahedron Lett. 2011, 52, 5702–5705; (c)
Singh, N.; Singh, S. K.; Khanna, R. S.; Singh, K. N. Tetrahedron Lett. 2011, 52,
2419–2422; (d) Raghuvanshi, D. S.; Singh, K. N. Synlett 2011, 373–377; (e)
Allam, B. K.; Singh, K. N. Synthesis 2011, 1125–1131.
References and notes
1. Kappe, C. O.; Stadler, A. Microwaves in Organic and Medicinal Chemistry; Wiley-
VCH: Weinheim, Germany, 2005.
14. General procedure for preparation of N-arylated amines 3: Aryl halide (1 mmol),
amine (1.5 mmol), NiCl2ꢀ6H2O (10 mol % relative to aryl halide) and
triethylamine (1.4 equiv) were taken in a 10 mL pressurized microwave vial
with snap on cap. The reaction mixture was subjected to microwave exposure
for 20 min at 300 W at appropriate temperature as indicated above. The
progress of the reaction was monitored by TLC (Thin Layer Chromatography).
After the reaction was completed, the reaction mixture was diluted with DCM
and the insoluble catalyst was recovered and recycled without loss of activity.
The filtrate was concentrated and subjected to column chromatography with
n-hexane and ethyl acetate (2–10% depending upon the product) as eluent to
afford the pure product.
2. (a) Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250–6284; (b) Hayes, B. L.
Aldrichim. Acta 2004, 37, 66; (c) Roberts, B. A.; Strauss, C. R. Acc. Chem. Res. 2005,
38, 653–661; (d) De La Hoz, A.; Diaz-Ortiz, A.; Moreno, A. Chem. Soc. Rev. 2005,
34, 164–178; (e) Perreux, L.; Loupy, A. Tetrahedron 2001, 57, 9199–9223; (f)
Kuhnert, N. Angew. Chem., Int. Ed. 2002, 41, 1863–1866; (g) Strauss, C. R. Angew.
Chem., Int. Ed. 2002, 41, 3589–3591.
3. (a) Larhed, M.; Hallberg, A. Drug Discovery Today 2001, 6, 406–416; (b) Wathey,
B.; Tierney, J.; Lidström, P.; Westman, J. Drug Discovery Today 2002, 7, 373–380;
(c) Al-Obeidi, F.; Austin, R. E.; Okonya, J. F.; Bond, D. R. S. Mini-Rev. Med. Chem.
2003, 3, 449–460; (d) Kappe, C. O.; Dallinger, D. Nat. Rev. Drug Disc. 2006, 5, 51–
63.
4. (a) Bogdal, D.; Penczek, P.; Pielichowski, J.; Prociak, A. Adv. Polym. Sci. 2003, 163,
193–263; (b) Wiesbrock, F.; Hoogenboom, R.; Schubert, U. S. Macromol. Rapid
Commun. 2004, 25, 1739–1764.
5. (a) Barlow, S.; Marder, S. R. Adv. Funct. Mater. 2003, 13, 517–518; (b) Zhu, Y.-J.;
Wang, W. W.; Qi, R.-J.; Hu, X.-L. Angew. Chem., Int. Ed. 2004, 43, 1410–1414.
6. Tsuji, M.; Hashimoto, M.; Nishizawa, Y.; Kubokawa, M.; Tsuji, T. Chem. Eur. J.
2005, 11, 440–452.
N-(p-Tolyl) phenyl amine (3b): colorless solid; mp 88 °C; IR (KBr):
m ;
3344 cmꢁ1
1H NMR (300 MHz, CDCl3): d 2.30 (s, 3H), 5.59 (s, 1H), 6.85 (t, J = 7.2 Hz, 1H),
6.99 (m, 4H), 7.07 (m, 2H), 7.20 (m, 2H); 13C NMR (75 MHz, CDCl3): d 20.7,
116.8, 118.9, 120.3, 129.3, 129.8, 130.9, 140.3, 143.9.
N-(4-Methoxyphenyl) aniline (3c): Colorless solid; mp 105 °C; IR (KBr):
m
3402 cmꢁ1 1H NMR (300 MHz, CDCl3): d 3.79 (s, 3H), 5.48 (s, 1H) 6.80–6.91 (m,
;
5H), 7.05–7.08 (m, 2H) 7.18–7.25 (m, 2H). 13C NMR (75 MHz, CDCl3): d 55.5,
114.6, 115.6, 119.5, 122.2, 129.3, 135.7, 145.1, 155.2.