Page 7 of 9
New Journal of Chemistry
Please do not adjust margins
Journal Name
ARTICLE
1
2
3
4
5
6
7
noted. Rather, viewed along the crystallographic c axis, the 3D towards the peripheral cyanide groups. Being a robust
packing of 2 reveals the presence of small channels, where all diamagnetic species, complex 1 opens aDnOeIw: 10a.v10e3n9u/Ce9fNoJr0m04e2t0aCl
the disordered lattice water molecules are located (Fig. 6), and assembling in the near future when used as a metalloligand
they are involved into an extensive network of hydrogen bonds versus either preformed metal complexes whose coordination
which contribute to the stabilization of the crystal packing.
sphere is unsaturated or well fully solvated metal ions.
8
9
Magnetic properties
Conflicts of interest
There are no conflicts to declare.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Compound 1 is a diamagnetic species as expected for a
dicobalt(III) complex where each metal centre is six-coordinated
by four strong field cyanide ligands and one pyridyl and one
pyrazine nitrogen atoms from a bis-bidentate 2,5-dpp molecule.
The magnetic properties of 2 in the form of χMT versus T plot [χM
is the magnetic susceptibility per CoIII2MnII unit) are shown in
Fig. 7. At room temperature, χMT for 2 is ca. 4.38 cm3 mol-1 K, a
value which is as expected for a magnetically isolated high-spin
MnII with gMn = 2.0, the CoIII being diamagnetic. Upon cooling,
this value remains constant until 10 K and it further exhibits a
very small decrease to 4.22 cm3 mol-1 K at 1.9 K. This behaviour
corresponds to a practically magnetically isolated spin sextet
with a g value of 2.005(3).
Acknowledgements
This work was financially supported by the Romanian National
Authority for Scientific Research (CNCS-UEFISCDI) (Projects PN-
II-RU-TE-2014-4-1556 and PN-III-P1-1.1-MC-2018-1877), the
Italian Ministero dell’Istruzuione dell’Università e della Ricerca
(MIUR) and the Ministerio Español de Economía
Competitividad (MINECO) (Project CTQ2016-75068P and
Unidad de Excelencia María de Maetzu MDM-2015-0538).
y
Notes and references
1
(a) C. R. K. Glasson, L. F. Lindoy and G. V. Meehan, Coord.
Chem. Rev., 2008, 252, 940-963; (b) L. Salassa, Eur. J. Inorg.
Chem., 2011, 4931-4947; (c) R. D. Hancock, Chem. Soc. Rev.,
2013, 42, 1500-1524; (d) S. Culham, P.-H. Lanoë, V. L. Whittle,
M. C. Durrant, J. A. Gareth Williams and V. N. Kozhevnikov,
Inorg. Chem., 2013, 52, 10992-11003; (e) B. Colasson, A. Credi
and G. Ragazzon, Coord. Chem. Rev., 2016, 325, 125-134; (f)
B. Floris, M. P. Donzello, C. Ercolani and E. Viola, Coord. Chem.
Rev., 2007, 347, 115-140; (g) M. Attwood and S. S. Turner,
Coord. Chem. Rev., 2017, 353, 247-277; (h) V. Bravec and J.
kaspatkova, Coord. Chem. Rev., 2018, 376, 75-94; (i) A. M.-H.
Yip and K. K.-W. Lo, Coord. Chem. Rev., 2018, 361, 138-163.;
(j) A. P. Sadimenko and O. O. Okoh, Adv. Heterocyclic Chem.,
10.1016/bs.aihch.2018.06.001.
Fig. 7. Plot of χMT vs. T for 2: (o) experimental; (__) best-fit curve through a Curie law (see
text). The inset shows the thermal dependence of the magnetization for 2 at 2.0 K. The
dashed line corresponds to the Brillouin function for a magnetically isolated S = 5/2 with
g = 2.005.
2
3
(a) A. Escuer, T. Comas, R. Vicente and J. Ribas, Transition Met.
Chem., 1993, 18, 42-44; (b) C. Yuste, A. Bentama, S.-E. Stiriba,
D. Armentano, G. De Munno, F. Lloret and M. Julve, Dalton
Trans., 2007, 5190-5200; (c) L. Donato, C. E. McCusker, F. N.
Castellano, E. Zysman-Colman, Inorg. Chem., 2013, 52, 8495-
8504.
(a) S. Serroni and G. Denti, Inorg. Chem., 1992, 31, 4251-4255;
(b) A. Neels and H. Stoeckli-Evans, Inorg. Chem., 1999, 38,
6164-6170.
This is corroborated by the field dependence of the
magnetization (M) of 2 at 2.0 K, M at 5 T tending to a value of
5.0 BM (see inset of Fig. 7).
4
5
M. Al-Anber, N. Wetzold, B. Walfort, T. Rüffer and H. Lang,
Inorg. Chim. Acta, 2013, 398, 124-131.
E. C. Constable, H. Eriksson, C. E. Housecroft, B. M. Kariuki, E.
Nordlander and J. Olsson, Inorg. Chem. Commun., 2001, 4,
749-752.
Conclusions
The first heterobimetallic 3d cyanido complex was obtained
and crystallographically characterized: a one pot reaction under
ambient conditions, involving the 2,5-dpp organic molecule,
cobalt(II) ions and cyanide anions affords the octacyanido
6
T. Tsubomura, S. Enoto, S. Endo, T. Tamane, K. Matsumoto
and T. Tsukuda, Inorg. Chem., 2005, 44, 6373-6378.
A. Neels and H. Stoeckli-Evans, Chimia, 1993, 47, 198-202.
(a) A. Bentama, O. Schott, J. Ferrando-Soria, S.-E. Stiriba, J.
Pasán, C. Ruiz-Pérez and M. Julve, Inorg. Chim. Acta, 2013,
389, 52-59; (b) C. Yuste, A. Bentama, N. Marino, D.
Armentano, F. Setifi, S. Triki, F. Lloret and M. Julve,
Polyhedron, 2009, 28, 1287-1294.
R. Lescouëzec, L. M. Toma, J. Vaissermann, M. Verdaguer, F.
S. Delgado, C. Ruiz-Pérez, F. Lloret and M. Julve, Coord. Chem.
Rev., 2005, 249, 2691-2729; (b) M.-G. Alexandru, D. Visinescu,
B. Braun-Cula, F. Lloret and M. Julve, Eur. J. Inorg. Chem.,
2018, 349-359; (c) M.-G. Alexandru, D. Visinescu, S. Shova, W.
7
8
III
complex (Ph4P)2[Co2 (μ-2,5-dpp)(CN)8]·2H2O (1) where the 2,5-
dpp molecule acts as a bis-bidentate ligand and the cobalt(II) ion
has become cobalt(III) by air oxidation. This cyanido building-
block was used as
a
metalloligand towards the
9
[Mn(MAC)(H2O)2]2+ complex cation to construct
a
III
heterometallic
chain,
[MnII(MAC)(μ-NC)2Co2 (μ-2,5-
dpp)(CN)6]n·7nH2O. This result proves the ability of the cyanide-
bearing cobalt(III) precursor to act as an efficient spacer
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins