10.1002/anie.201903533
Angewandte Chemie International Edition
COMMUNICATION
2585; e) H. Cui, Y. Li, S. Zhang, Org. Biomol. Chem. 2012, 10, 2862-
2869.
naturally occurring lignans (rac)-Cagayanin and (rac)-Galbulin
(Scheme 2, b).[16] Furthermore, the product 6c was reduced to
trans-(E)-dimethyl 2,3-bis(4-benzyloxy-3-methoxybenzylidene)-
1,4-butanediol 8 in 61% yield, which has been applied in the
synthesis of potential anti-apoptotic agent (rac)-Agastinol.[17]
(E,E)-2,3-Bis(4-benzyloxy-3-methoxybenzy-lidene)succinic acid
9 was achieved in 95% yield from 6c, and the product 9 can be
directly used for the synthesis of Cannabisin G,[18] which showed
cytotoxic activity against human prostate cancer LNCaP cells
[6]
[7]
a) M. De Paolis, I. Chataigner, J. Maddaluno, Recent Advances in
Stereoselective Synthesis of 1,3-Dienes. Top. Curr. Chem. 2012, 327,
87-146; b) J. F. Normant, Modern Synthetic Methods; R. Scheffold, Ed.;
Wiley: Chichester, 1983; Vol. 3, pp 139-171; c) I. T. Crouch, T. Dreier,
D. E. Frantz, Angew. Chem. Int. Ed. 2011, 50, 6128-6132.
For selected reviews and examples, see: a) E.-i. Negishi, Z. Huang, G.
Wang, S. Mohan, C. Wang, H. Hattori, Acc. Chem. Res. 2008, 41,
1474-1485; b) R. C. Larock, ComprehensiVe Organic Transformations,
Wiley: New York, 1999, 463-522; c) E. C. Hansen, D. Lee, Acc. Chem.
Res. 2006, 39, 509-519; d) A. L. Hansen, J.-P. Ebran, M. Ahlquist, P.-O.
Norrby, T. Skrydstrup, Angew. Chem. Int. Ed. 2006, 45, 3349-3353; e)
A. T. Lindhardt , M. L. H. Mantel, T. Skrydstrup, Angew. Chem. Int. Ed.
2008, 47, 2668-2672; f) J.-P. Ebran, A. L. Hansen, T. M. Gøgsig, T.
Skrydstrup, J. Am. Chem. Soc. 2007, 129, 6931-6942; g) J. L. Paih, C.
V. -L. Bray, S. Dérien, P. H. Dixneuf, J. Am. Chem. Soc. 2010, 132,
7391-7397; h) H. Yu, W. Jin, C. Sun, J. Chen, W. Du, S. He, Z. Yu,
Angew. Chem. Int. Ed. 2010, 49, 5792-5797; i) Y. Xia, Y. Xia, Z. Liu, Y.
Zhang, J. Wang, J. Org. Chem. 2014, 79, 7711-7717; j) J. Wu, N.
Yoshikai, Angew. Chem. Int. Ed. 2016, 55, 336-340; k) V. T. Nguyen, H.
T. Dang, H. H. Pham, V. D. Nguyen, C. Flores-Hansen, H. D. Arman, O.
V. Larionov, J. Am. Chem. Soc. 2018, 140, 8434-8438; l) N. Ishida, Y.
Hori, S. Okumura, M. Murakami, J. Am. Chem. Soc. 2019, 141, 84-88.
a) G. Zweifel, N. L. Polston, C. C. Whitney, J. Am. Chem. Soc. 1968, 90,
6243-6245; b) X. Zhang, R. C. Larock, Org. Lett., 2003, 5, 2993-2996; c)
C. Fu, S. Ma, Org. Lett., 2005, 7, 1707-1709; d) H. Horiguchi, H.
Tsurugi, T. Satoh, M. Miura, Adv. Synth. Catal. 2008, 350, 509-514; e)
S. Xu, W. Zou, G. Wu, H. Song, Z. He, Org. Lett., 2010, 12, 3556-3559.
a) T. Kégl, in Modern Carbonylation Methods, ed. L. Kollár, Wiley-VCH
Verlag GmbH & Co. KGaA, 2008, pp. 161-198; b) B. E. Ali, H. Alper, in
Transition Metals for Organic Synthesis, Wiley-VCH Verlag GmbH,
2008, pp. 113-132; c) R. Franke, D. Selent, A. Börner, Chem. Rev.
2012, 112, 5675-5732; d) P. Kalck, M. Urrutigoïty, O. Dechy-Cabaret, in
Catalytic Carbonylation Reactions, ed. M. Beller, Springer Berlin
Heidelberg, 2006, vol. 18, ch. 18, pp. 97-123; e) S. D. Friis, A. T.
Lindhardt, T. Skrydstrup, Acc. Chem. Res. 2016, 49, 594-605.
(Scheme 2, c)[19]
.
In summary, we have developed the first selective double
carbonylation reactions of 1,3-diynes, which complements
currently known methods. This catalytic protocol permits the
synthesis of a wide range of synthetically useful 1,2,3,4-tetra-
substituted conjugated dienes in high yields and selectivities.
Key to success is the utilization of the specific “built-in-base”
ligand L1, which allows these novel transformations to proceed
under mild conditions (room temperature). The synthesis of 6a-
6c exemplarily shows the synthetic utility of this methodology,
which provides valuable building blocks for modern organic
synthesis in a straightforward manner.[20]
[8]
[9]
Acknowledgements
This work is supported by the State of Mecklenburg-
Vorpommern. We thank the analytical team of LIKAT for their
kind support. J. Y thanks the Chinese Scholarship Council.
Keywords: 1,3-dienes • carbonylation • stereoselectivity •
palladium • P ligands
[10]
a) C. Glaser, Ber. Dtsch. Chem. Ges. 1869, 2, 422-424; b) C. Glaser,
Ann. Chem. Pharm. 1870, 154, 137-171; c) A. S. Hay, J. Org. Chem.
1960, 25, 1275-1276; d) A. Lei, M. Srivastava, X. Zhang, J. Org. Chem.
2002, 67, 1969-1971; e) Y. Nishihara, K. Ikegashira, K. Hirabayashi, J.
-i. Ando, A. Mori, T. Hiyama, J. Org. Chem. 2000, 65, 1780-1787; f) W.
Yin, C. He, M. Chen, H. Zhang, A. Lei, Org. Lett., 2009, 11, 709-712.
[1]
a) J. S. Glasby, Encyclopaedia of the Terpenoids; Wiley: Chichester,
UK, 1982; b) T. K. Devon, A. I. Scott, Handbook of Naturally Occurring
compounds; Academic: New York, NY, 1972; Vol. II; c) L. Peters, G. M.
König, H. Terlau, A. D. Wright, J. Nat. Prod. 2002, 65, 1633-1637; b) S.
F. Wnuk, B. -O. Ro, C. A. Valdez, E. Lewandowska, N. X. Valdez, P. R.
Sacasa, D. Yin, J. Zhang, R. T. Borchardt, E. De Clercq, J. Med. Chem.
2002, 45, 2651-2658.
[11] Y. Imada, H. Alper, J. Org. Chem. 1996, 61, 6766-6767.
[12] A. A. N. Magro, L. M. Robb, P. J. Pogorzelec, A. M. Z. Slawin, G. R.
Easthamb, D. J. Cole-Hamilton, Chem. Sci. 2010, 1, 723–730.
[13] a) K. Dong, X. Fang, S. Gülak, R. Franke, A. Spannenberg, H. Neumann,
R. Jackstell, M. Beller, Nat. Commun. 2017, 8, 14117; b) K. Dong, R.
Sang, X. Fang, R. Franke, A. Spannenberg, H. Neumann, R. Jackstell,
M. Beller, Angew. Chem. Int. Ed. 2017, 56, 5267-5271; c) J. Liu, K.
Dong, R. Franke, H. Neumann, R. Jackstell, M. Beller, J. Am. Chem.
Soc. 2018, 140, 10282-10288.
[2]
[3]
K. N. Houk, Acc. Chem. Res. 1975, 8, 361-369;
a) E. J. Corey, Angew. Chem. Int. Ed. 2002, 41, 1650−1667; b) L. Liao,
R. Jana, K. B. Urkalan, M. S. Sigman, J. Am. Chem. Soc. 2011, 133,
5784−5787; c) Y. Sasaki, C. Zhong, M. Sawamura, H. Ito, J. Am. Chem.
Soc. 2010, 132, 1226-1227; d) V. Eschenbrenner-Lux, K. Kumar, H.
Waldmann, Angew. Chem. Int. Ed. 2014, 53, 11146-11157; e) S. E.
Parker, J. Börgel, T. Ritter, J. Am. Chem. Soc. 2014, 136, 4857-4860; f)
B. Maji, H. Yamamoto, J. Am. Chem. Soc., 2015, 137, 15957-15963.; g)
P. Yu, A. Patel, K. N. Houk, J. Am. Chem. Soc. 2015, 137, 13518-1352;
h) X.-H. Yang, A. Lu, V. M. Dong, J. Am. Chem. Soc. 2017, 139,
14049-14052; i) S. R. Sardini, M. K. Brown, J. Am. Chem. Soc. 2017,
139, 9823−9826; j) A. Tortajada, R. Ninokata, R. Martin, J. Am. Chem.
Soc. 2018, 140, 2050−2053; k) Y. Xiong, G. Zhang, J. Am. Chem. Soc.
2018, 140, 2735-2738.
[14] K. Dong, R. Sang, Z. Wei, J. Liu, R. Dühren, A. Spannenberg, H. Jiao, H.
Neumann, R. Jackstell, R. Franke, M. Beller, Chem. Sci. 2018, 9, 2510-
2516.
[15] a) E. Drent, P. Arnoldy, H. M. Budzelaar, J. Organomet. Chem., 1993,
455, 247-253; b) G. Vasapollo, A. Scarpa, G. Mele, L. Ronzini, B. El Ali,
Appl. Organomet. Chem. 2000, 14, 739-743; c) C. J. Rodriguez, D. F.
Foster, G. R. Eastham, D. J. Cole-Hamilton, Chem. Commun., 2004,
1720-1721; d) T. Xu, H. Alper, J. Am. Chem. Soc. 2014, 136, 16970-
16973; e) P. Roesle, L. Caporaso, M. Schnitte, V. Goldbach, L. Cavallo,
S. Mecking, J. Am. Chem. Soc., 2014, 136, 16871-16881; f) P. W. van
Leeuwen, P. C. Kamer, Catal. Sci. Technol. 2018, 8, 26-113; g) J. Y.
Wang, A. E. Strom, J. F. Hartwig, J. Am. Chem. Soc. 2018, 140, 7979-
7993.
[4]
[5]
a) M. L. Metzker, J. Lu, R. A. Gibbs, Science 1996, 271, 1420-1422; b)
M. V. Jiménez, J. J. Pérez-Torrente, M. I. Bartolomé, E. Vispe, F. J.
Lahoz, L. A. Oro, Macromolecules 2009, 42, 8146-8156; c) T. Kitamura,
N. Tanaka, A. Mihashi, A. Matsumoto, Macromolecules 2010, 43, 1800-
1806; d) A. Valente, A. Mortreux, M. Visseaux, P. Zinck, Chem. Rev.
2013, 113, 3836−3857.
a) E. Vedejs, M. J. Peterson, Advances in Carbanion Chemistry; V.
Snieckus, Ed.; Jai Press Inc.: Greenwich, CT, 1996; Vol. 2; b) B. E.
Maryanoff, A. B. Reitz, Chem. Rev. 1989, 89, 863-927; c) L. F. van
Staden, D. Gravestock, D. J. Ager, Chem. Soc. Rev., 2002, 31, 195-
200; d) Blakemore, P. R. J. Chem. Soc., Perkin Trans. 1 2002, 2563-
[16] P. K. Datta, C. Yau, T. S. Hooper, B. L. Yvon, J. L. Charlton, J. Org.
Chem. 2001, 66, 8606-8611.
[17] a) J. Ding, H. Zhou, B. Jiao, Y. Xia, J. Chem. Res. 2011, 35, 352-354; b)
Y. Xia, Y. Wen, J. Chem. Res., 2010, 34, 606-609; c) C. Lee, H. Kim, Y.
Kho, J. Nat. Prod. 2002, 65, 414-416.
[18] Y. Xia, Y. Guo, Y. Wen, J. Ser. Chem. Soc. 2010, 75, 1617-1623.
This article is protected by copyright. All rights reserved.