COMMUNICATIONS
[3] G. Jung, A. G. Beck-Sickinger, Angew. Chem. 1992, 104, 375 391;
Angew. Chem. Int. Ed. Engl. 1992, 31, 367 383.
First Direct Observation of the Two Distinct
Steps in an SN1 Reaction**
[4] For a recent review on solid-phase oligosaccharide synthesis see: P. H.
Seeberger, W.-C. Haase, Chem. Rev. 2000, 100, 4349 4393. a) For a
first investigation of solid-phase oligosaccharide synthesis with an
automated synthesizer see: O. J. Plante, E. R. Palmacci, P. H. See-
berger, Science 2001, 291, 1523 1527;b) E. R. Palmacci, O. J. Plante,
P. H. Seeberger, Eur. J. Org. Chem. 2002, 595 606.
[5] a) T. Zhu, G.-J. Boons, Chem. Eur. J. 2001, 7, 2382 2389;b) T. Zhu,
G.-J. Boons, J. Am. Chem. Soc. 2000, 122, 10222 10223;c) K. C.
Nicolaou, N. Watanabe, J. Li, J. Pastor, N. Winssinger, Angew. Chem.
1998, 110, 1636 1638; Angew. Chem. Int. Ed. 1998, 37, 1559 1561;
d) K. C. Nicolaou, N. Winssinger, J. Pastor, F. DeRoose, J. Am. Chem.
Soc. 1997, 119, 449 452.
Herbert Mayr* and Shinya Minegishi
The differentiation of bimolecular (SN2) and unimolecular
nucleophilic substitutions (SN1) by Ingold and co-workers
marks the beginning of the mechanistic period of organic
chemistry.[1] Since then, countless investigations on the rates
and products of SN1 reactions have been performed. A
considerable part of our knowledge of the relationships
between structure and reactivity of carbocations (Rþ), the
intermediates of these reactions, has been derived from
[6] R. Liang, L. Yan, J. Loebach, M. Ge, Y. Uozumi, K. Sekanina, N.
Horan, J. Gildersleeve, A. Smith, K. Biswas, D. E. Kahne, Science
1996, 274, 1520 1522.
5]
solvolysis studies[2 [Eq. (1)].
[7] Y. Ito, T. Ogawa, J. Am. Chem. Soc. 1997, 119, 5562 5566.
[8] S. J. Danishefsky, K. F. McClure, J. T. Randolph, R. B. Ruggeri,
Science 1993, 260, 1307 1309.
slow
SolvOH
RꢁCl
Rþ þ Clꢁ
RꢁOSolv þ HCl
ð1Þ
!
G
H
fast
[9] a) M. C. Hewitt, P. H. Seeberger, J. Org. Chem. 2001, 66, 4233 4243;
b) R. B. Andrade, O. J. Plante, L. G. Melean, P. H. Seeberger, Org.
Lett. 1999, 1811 1814.
[10] R. Rodebaugh, S. Joahi, B. Fraser-Reid, M. H. Geysen, J. Org. Chem.
1997, 62, 5660 5663.
The discovery by Olah and co-workers that many types of
carbocations exist as long-lived species in superacidic solu-
tions, media of low nucleophilicity, allowed the direct
observation of carbocations by spectroscopic methods.[6,7]
In recent years, much information on the rates of the
reactions of carbocations with nucleophiles,[8,9] including
solvents (SolvOH) of SN1 reactions,[10,11] became available.
In agreement with earlier conclusions from solvolysis stud-
ies,[12,13] the rates of decay of laser-flash photolytically
generated carbocations in 2,2,2-trifluoroethanol (TFE) re-
vealed this alcohol as a weakly nucleophilic solvent.[10]
Accordingly, we have now found a first-order rate constant
of 12.7 ꢀ 0.4 sꢁ1 for the decay of bis(4-methoxyphenyl)carbe-
nium tetrafluoroborate (1-BF4) in TFE/acetonitrile (91:9
(v/v)) at 208C, corresponding to a half-life of 55 ms (Table 1,
entry 1). This rate constant is only slightly reduced in the
presence of tetra-n-butylammonium chloride (nBu4NCl)
(Table 1, entry 2) and remains almost constant as the TFE/
CH3CN ratio is reduced from 91:9 to 20:80 (Table 1, entries
3 5). Entries 6 and 7 in Table 1 indicate that the presence of
0.5m NaClO4 or LiClO4 does not affect the rate of the reaction
of 1þ with TFE.[14]
The ethanolysis rate constant of chlorobis(4-methoxyphe-
nyl)methane (1-Cl), that is the rate of the SN1 reaction in
ethanol, has previously been determined as k ¼ 57 sꢁ1 at 258C,
a million times higher than the ethanolysis rate constant of the
parent chlorodiphenylmethane (5.34 î 10ꢁ5 sꢁ1).[15] Since
chlorodiphenylmethane, on the other hand, was reported to
undergo solvolysis in TFE/water (97:3 (w/w)) with k ¼
1.05 sꢁ1,[16] we extrapolated an SN1 reactivity of 1-Cl in TFE/
water (97:3 (w/w)) of 57 sꢁ1 î (1.05/5.34 î 10ꢁ5) ¼ 1.1 î 106 sꢁ1.
The ionization of 1-Cl in TFE was thus expected to be 105
times faster than the reaction of 1þ with this solvent. Since
[11] O. Seitz, C. -H, Wong, J. Am. Chem. Soc. 1997, 119, 8766 8776.
[12] a) M. Grathwohl, R. R. Schmidt, Synthesis 2001, 2263 2272;b) X.
Wu, M. Grathwohl, R. R. Schmidt, Org. Lett. 2001, 3, 747 750;c) F.
Roussel, L. Knerr, R. R. Schmidt, Eur. J. Org. Chem. 2001, 2066
2073;d) L. Knerr, R. R. Schmidt, Eur. J. Org. Chem. 2000, 2803
2808;e) L. Knerr, R. R. Schmidt, Synlett 1999, 1802 1804;f) J.
Rademann, A. Geyer, R. R. Schmidt, Angew. Chem. 1998, 110, 1309
1313; Angew. Chem. Int. Ed. 1998, 37, 1241 1245;g) J. Rademann,
R. R. Schmidt, J. Org. Chem. 1997, 62, 3650 3653;h) A. Heckel, E.
Mross, K.-J. Jung, J. Rademann, R. R. Schmidt, Synlett 1998, 171 173.
[13] a) R. R. Schmidt, Angew. Chem. 1986, 98, 213 236; Angew. Chem.
Int. Ed. Engl. 1986, 25, 212 235;b) R. R. Schmidt, W. Kinzy, Adv.
Carbohydr. Chem. Biochem. 1994, 50, 21 123.
[14] F. Roussel, L. Knerr, M. Grathwohl, R. R. Schmidt, Org. Lett. 2000, 2,
3043 3046.
[15] F. Roussel, M. Takhi, R. R. Schmidt, J. Org. Chem. 2001, 66, 8540
8548.
[16] For recent examples of N-glycan synthesis in solution see: M. V.
Chiesa, R. R. Schmidt, Eur. J. Org. Chem. 2000, 3541 3554 and
references [5 15] therein.
[17] S. P. Douglas, D. M. Whitfield, J. J. Krepinsky, J. Am. Chem. Soc. 1995,
117, 2116 2117.
[18] For leading references on b-mannopyranoside synthesis see: R.
Weingart, R. R. Schmidt, Tetrahedron Lett. 2000, 41, 8753 8758.
[19] For a highly selective b-mannopyranoside synthesis see: A. A.-H.
Abdel-Rahman, S. Jonke, E. S. H. El Ashry, R. R. Schmidt, Angew.
Chem. 2002, 114, 3100 3103; Angew. Chem. Int. Ed. 2002, 41, 2710
2716.
[20] M. Grathwohl, Diplomarbeit, University of Konstanz, 1997.
[21] T. Bieg, W. Szeja, J. Carbohydr. Chem. 1985, 4, 441 446.
[22] L. Liang, T.-H. Chan, Tetrahedron Lett. 1998, 39, 355 358.
[23] R. R. Schmidt, X. Wu, unpublished results.
[24] O. Kanie, S. C. Crawley, M. M. Palcic, O. Hindsgaul, Carbohydr. Res.
1993, 243, 139 164.
[*] Prof. Dr. H. Mayr, S. Minegishi
Department Chemie
Ludwig-Maximilians-Universit‰t M¸nchen
Butenandtstrasse 5 13 (Haus F), 81377 M¸nchen (Germany)
Fax : (þ 49)89-2180-7717
E-mail: herbert.mayr@cup.uni-muenchen.de
[**] We thank Prof. D. N. Kevill and Dr. J. Crooks for comments and
helpful suggestions. Financial support by the Deutsche Forschungsge-
meinschaft and the Fonds der Chemischen Industrie is gratefully
acknowledged.
Angew. Chem. Int. Ed. 2002, 41, No. 23
¹ 2002 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
0044-8249/02/4123-4493 $ 20.00+.50/0
4493