The Journal of Organic Chemistry
Article
(Z)-3-(5-Chloro-2-hydroxyphenyl)-2-(chloromethyl)-2-propenoic acid
(6e) [pale-yellow solid (0.39 g, 89%), mp 126−128 °C (Found: C,
48.48; H, 3.48%. C10H8Cl2O3 requires C, 48.61; H, 3.26%); νmax/cm−1
3408 (OH), 1666 (CO); δH (400 MHz, CDCl3) 4.42 (2H, s), 6.80
(1H, d, J = 8.7 Hz), 7.21 (1H, d, J = 8.7 Hz), 7.55 (1H, s), 8.00 (1H, s);
δC (100 MHz, methanol-d4) 40.1, 117.9, 124.3, 125.2, 130.0, 130.3,
131.9, 139.3, 156.5, 169.3 (CO)] and 6-chloro-3-(chloromethyl)-
coumarin (7e) (10% estimated by 1H NMR analysis).
ACKNOWLEDGMENTS
■
The authors thank Rhodes University for a bursary (to T.O.O.).
This work is based upon research supported by the National
Research Foundation (NRF; South Africa: IFR2011032500034)
and Rhodes University. T.O.O. gratefully acknowledges Obafemi
Awolowo University (Ile-Ife, Nigeria) for study leave. M.R.C.
thanks the University of Cape Town and the NRF (South Africa:
IFR201132500034) for research support. Any opinion, findings,
and conclusions or recommendations expressed in this material
are those of the authors, and therefore, the NRF does not accept
any liability in regard thereto.
X-ray Analysis of 2-(Chloromethyl)cinnamic Acid Derivative
6a. Crystal data for 6a: C10H9ClO3, M = 212.62, 0.25 mm × 0.13 mm ×
0.09 mm, triclinic, space group P1 (No. 2), a = 5.1208(4) Å, b =
̅
7.8498(8) Å, c = 11.9863(12) Å, α = 99.256(4)°, β = 91.114(7)°, γ =
100.217(7)°, V = 467.43(8) Å3, Z = 2, Dc = 1.511 g cm−3, F000 = 220, Mo
Kα radiation, λ = 0.71073 Å, T = 173(2) K, 2θmax = 54.9°, 25 716
reflections collected, 2115 unique (Rint = 0.0427). Final GOF = 1.044, R1
= 0.0765, wR2 = 0.2063, R indices based on 1552 reflections with I >
2σ(I), (refinement on F2), 129 parameters, 0 restraints. Lorentz
polarization and absorption corrections applied, μ = 0.383 mm−1,
CCDC 1016110.
REFERENCES
■
(1) (a) Baylis, A. B.; Hillman, M. E. D. German Patent 2155113, 1972.
(b) Takizawa, S.; Remond, E.; Arteaga, F. A.; Yoshida, Y.; Sridharan, V.;
́
́
Bayardon, J.; Juge, S.; Sasai, H. Chem. Commun. 2013, 49, 8392−8394.
(c) Peng, C.; Joy, A. Macromolecules 2014, 47, 1258−1268. (d) Verma,
P.; Verma, P.; Sunoj, R. B. Org. Biomol. Chem. 2014, 12, 2176−2179.
(e) Basavaiah, D.; Veeraraghavaiah, G.; Badsara, S. S. Org. Biomol. Chem.
2014, 12, 1551−1555. (f) Yin, Y.; Sun, G.; Zhang, H.; Zhou, H.; Wu, F.
Chin. J. Chem. 2014, 32, 365−369. (g) Bharadwaj, K. C. RSC Adv. 2015,
5, 75923. (h) Xie, P.; Huang, Y. Org. Biomol. Chem. 2015, 13, 8578.
(2) (a) Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41,
2815. (b) Morita, K. Japanese Patent 6803364, 1968.
Kinetic Studies. Kinetic experiments were conducted on a Bruker
Biospin 600 MHz NMR spectrometer. Temperature calibration of the
spectrometer was carried out between 273 and 333 K, and the
temperatures reported for each kinetic run are the corrected values. For
each kinetic run, acetyl chloride (0.1 mL) was added to cooled CD3OD
(0.4 mL) in a graduated NMR tube, which was then sealed with a
1
septum, and an initial H NMR spectrum was obtained. A solution of
compound 5a (20 mg, 80 μmol) in CD3OD (0.1 mL) was then added,
the total volume of reaction mixture noted, and the tube replaced in the
NMR probe. 1H NMR spectra were recorded automatically with a delay
of 40 s between acquisitions. Experiments were repeated at six different
temperatures between 273 and 295 K.
(3) (a) Basavaiah, D.; Rao, K. V.; Reddy, R. J. Chem. Soc. Rev. 2007, 36,
1581−1588. (b) Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511−4574.
(c) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110,
5447−5674. (d) Wei, Y.; Shi, M. Chem. Rev. 2013, 113, 6659−6690.
(e) Ciganek, E. Org. React. 1997, 51, 201−350.
Computational Studies. All of the density functional theory
calculations were performed with the B3LYP hybrid density functional
with the 6.31G(d) basis set using the Gaussian 03 program17 running on
an Intel/Linux cluster; Gaussview 4.126 and Molden27 were used for
visualization. Stationary-state structures were characterized by vibra-
tional analysis. Substrates, products, and intermediates were charac-
terized by the absence of imaginary frequencies and transition-state
complexes by the presence of a single imaginary frequency. Each
transition-state structure was confirmed by inspection of the vibration
corresponding to the imaginary frequency, calculation of the
corresponding IRC path, or in some cases energy minimization of
structures close to the transition state. Table 5 summarizes the
calculated free energies and, where appropriate, vibrational frequencies
for the stationary states involved in paths A, B, and C.
(4) (a) Familoni, O. B.; Kaye, P. T.; Klaas, P. J. Chem. Commun. 1998,
2563−2564. (b) Familoni, O. B.; Klaas, P. J.; Lobb, K. A.; Pakade, V. E.;
Kaye, P. T. Org. Biomol. Chem. 2006, 4, 3960−3965.
(5) Kaye, P. T.; Musa, M. A.; Nocanda, X. W.; Robinson, R. S. Org.
Biomol. Chem. 2003, 1, 1133−1138.
(6) (a) Kaye, P. T.; Nocanda, X. W. Synthesis 2001, 2389−2392.
(b) Kaye, P. T.; Nocanda, X. W. J. Chem. Soc., Perkin. Trans. 1 2002,
1318−1323.
(7) Olomola, T. O.; Klein, R.; Lobb, K. A.; Sayed, Y.; Kaye, P. T.
Tetrahedron Lett. 2010, 51, 6325−6328.
(8) Olomola, T. O.; Klein, R.; Mautsa, N.; Sayed, Y.; Kaye, P. T. Bioorg.
Med. Chem. 2013, 21, 1964−1971.
(9) Didierjean, J.; Isel, C.; Querre, F.; Mouscadet, J.-F.; Aubertin, A.-
M.; Valnot, J.-Y.; Piettre, S. R.; Marquet, R. Antimicrob. Agents
Chemother. 2005, 49, 4884−4894.
ASSOCIATED CONTENT
(10) Wang, Z.; Bennett, E. M.; Wilson, D. J.; Salomon, C.; Vince, R. J.
Med. Chem. 2007, 50, 3416−3419.
■
S
* Supporting Information
(11) (a) Dayam, R.; Gundla, R.; Al-Mawsawi, L. Q.; Neamati, N. Med.
Res. Rev. 2008, 28, 118−154. (b) Bodiwala, H. S.; Sabde, S.; Gupta, P.;
Mukherjee, R.; Kumar, R.; Garg, P.; Bhutani, K. K.; Mitra, D.; Singh, I. P.
Bioorg. Med. Chem. 2011, 19 (3), 1256−1263.
The Supporting Information is available free of charge on the
Copies of 1H and 13C NMR spectra for all new compounds
(12) Idahosa, K. C.; Lee, Y.-C.; Nyoni, D.; Kaye, P. T.; Caira, M. R.
Tetrahedron Lett. 2011, 52, 2972−2976.
and X-ray crystal structure of compound 6a (PDF)
Cartesian coordinates of all computed structures (TXT)
(13) (a) Hill, J. S.; Isaacs, N. S. J. Phys. Org. Chem. 1990, 3, 285−290.
(b) Bode, M. L.; Kaye, P. T. Tetrahedron Lett. 1991, 32, 5611−5614.
(c) Price, K. E.; Broadwater, S. J.; Jung, H. M.; McQuade, D. T. Org. Lett.
2005, 7, 147−150. (d) Price, K. E.; Broadwater, S. J.; Walker, D. J.;
McQuade, D. T. J. Org. Chem. 2005, 70, 3980−3987. (e) Robiette, R.;
Aggarwal, V. K.; Harvey, J. N. J. Am. Chem. Soc. 2007, 129, 15513−
15525.
X-ray crystallographic data for compound 6a (CIF)
The crystallographic data for compound 6a have also been
deposited with the Cambridge Crystallographic Data Centre
(CCDC 1016110).
(14) Olomola, T. O.; Klein, R.; Kaye, P. T. Synth. Commun. 2012, 42,
251−257.
(15) Tiekenk, E. R. T. In Organic Crystal Engineering: Frontiers in
Crystal Engineering; Tiekenk, E. R. T., Vittal, J., Zaworotko, M., Eds.;
John Wiley & Sons: Chichester, U.K., 2010; Chapter 6, pp 191−192.
(16) Bernstein, J.; Davis, R. E.; Shimoni, L.; Chang, N. L. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 1555−1573.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
119
J. Org. Chem. 2016, 81, 109−120