13C{1H} NMR d 98.3 [d, 1JPC 58.3 Hz, PCCH2], 96.1 [d, 2JPC 6.8 Hz, CMe],
92.0 [d, 2JPC 4.5 Hz, CMe], 88.1 [s, Cp*], 80.8 [d, 1JPC 58.8 Hz, PCH], 60.6
[d, 2JPC 23.6 Hz, CH2O], 14.2 [s, CMe], 11.3 [s, Cp*], 10.5 [s, CMe] ppm.
MS (EI, 70 eV): m/z (%) 377 (100) [M+ 2 H], 359 (53) [M+ 2 H3O], 346
(35) [M+ 2 CH4O]. 9: (CDCl3, 298 K) 31P{1H} NMR d 212.7 [d, 3JPP 28.7
Hz, PPh2], 244.9 [d, 3JPP 28.7 Hz, PRu] ppm. 13C{1H} NMR d 140–127
2
[ArC], 94.5 [d, JPC 6.7 Hz, CMe], 93.3 [dd, JPC 58.4, 18.9 Hz, PCCH2],
92.1 [dd, JPC 8.3, 6.4 Hz, CMe], 87.4 [s, Cp*], 80.3 [d, 1JPC 59.0 Hz, PCH],
29.7 [dd, JPC 19.2, 14.7 Hz, CH2P], 14.6 [s, CMe], 11.2 [s, Cp*], 11.0 [d,
4JPC 2.3 Hz, CMe] ppm. MS (EI, 70 eV): m/z (%) 546 (2) [M+], 360 (100)
[M+ 2 PPh2H].
‡ Crystal data: For 4: from THF. C44H54P2Ru2, M = 846.95, monoclinic,
space group P21/n, a = 11.087(5), b = 14.757(5), c = 12.041(5) Å, b =
96.340(5)°, U = 1958.0(14) Å3, Z = 2, Dc = 1.437 g cm23, F(000) = 872.
Monochromated Mo-Ka radiation l = 0.71070 Å. m = 0.883 cm21, T =
150 K. Of 5702 independent reflections measured over h: 215 to 15, k: 220
to 18, l: 216 to 15° from an orange plate of ca. 0.20 3 0.20 3 0.12 mm on
a Kappa CCD diffractometer, 4346 with I > 2s(I) were refined on F2 using
direct methods in SHELXL. wR2 = 0.1072, R1 = 0.0388, GoF = 1.075.
For 6a: C31H47PRuSi from CH2Cl2–EtOH. M = 579.82, monoclinic, space
Fig. 2 Molecular structure of [RuCp*(PC4Ph(Sii-Pr3)Me2)] 6a. Selected
bond lengths (Å): Ru(1)–P(1), 2.405(1); Ru(1)–C(1), 2.228(2); Ru(1)–C(2),
2.186(2); Ru(1)–C(3), 2.195(2); Ru(1)–C(4), 2.275(2); P(1)–C(1),
1.798(2); C(1)–C(2), 1.431(2); C(2)–C(3), 1.436(2); C(3)–C(4), 1.439(2);
P(1)–C(4), 1.795(2).
group P21/c, a
= 8.939(5), b = 42.464(5), c = 8.166(5) Å, b =
110.070(5)°, U = 2911(2) Å3, Z = 4, Dc = 1.323 g cm23, F(000) = 1224,
m = 0.652 cm21. 8165 independent reflections from a pale yellow crystal
of ca. 0.20 3 0.20 3 0. 20 mm were collected, over h: 212 to 12, k: 253
to 59, l: 211 to 11°, and 6814 were refined using the methods above. wR2
= 0.0791, R1 = 0.0313, GoF = 1.034. CCDC 193091 and 193092. See
CIF or other electronic format.
6a,b were isolated by chromatography (silica, pentane, 6b, rf
ca. 0.2) or crystallisation (MeOH, 6a). Crowding in 6a is clearly
reflected in the centroid-C(4)–Si(1) angle of 18.0° (Fig. 2).
As anticipated, compounds 6 show useful reactivity towards
electrophiles. Protodesilylation using TMSCl–methanol led
quantitatively to the parent phospharuthenocenes 3 and treat-
ment of either 3 or 6 with [CF3CO]+[F3BO2CCF3]2 2b,15 gave
the corresponding 2-(trifluoroacetyl)phospharuthenocenes 7.
The utility of these complexes was confirmed by transformation
of 7b into the potentially versatile10,16 (2-phospharuthenocene)-
methanol derivative 8 and its classical elaboration into the target
(2-phospharuthenocene)methylphosphine 9 (Scheme 1).
It seems clear that the methodology developed above
provides the means to transform readily available phospholide
anions into a wide variety of a-functionalised phosphar-
uthenocenes. No organic phospharuthenocene chemistry has
been described prior to this article but complexes 3–9 are stable
and easy to handle, and the simplicity of their functional group
transformations makes them good candidates for more sophisti-
cated elaboration. The approach described here is particularly
well-suited to the synthesis of Cp*-substituted phosphametallo-
cenes which, when employed as enantiopure ligands, seem
likely to deliver better ee’s than their Cp-derived analogues.
Given the relationship of 9 to the ligand class exemplified by 1,
further phospharuthenocene work is in progress.
1 Recent reviews: L. Weber, Angew. Chem., Int. Ed., 2002, 41, 563; D.
Carmichael and F. Mathey, Top. Curr. Chem., 2002, 220, 27; C. Ganter,
J. Chem. Soc., Dalton Trans, 2001, 3541.
2 Lead references: S. O. Agustsson, H. Chunhua, U. Englert, T. Marx, L.
Wesemann and C. Ganter, Organometallics, 2002, 21, 2993; R. Shintani
and G. C. Fu, Org. Lett., 2002, 4, 3699; M. Ogasawara, K. Yoshida and
T. Hayashi, Organometallics, 2001, 20, 3913.
3 S. Qiao and G. C. Fu, J. Org. Chem., 1998, 63, 4168; for the Cp based
analogue, see also: C. Ganter, L. Brassat and B. Ganter, Chem. Ber.-
Recueil, 1997, 130, 1771.
4 K. Tanaka, S. Qiao, M. Tobisu, M. M.-C. Lo and G. C. Fu, J. Am. Chem.
Soc., 2000, 122, 9870; K. Tanaka and G. C. Fu, J. Org. Chem., 2001, 66,
8177.
5 D. Carmichael, L. Ricard and F. Mathey, J. Chem. Soc., Chem.
Commun., 1994, 1167; M. Ogasawara, K. Yoshida, T. Nagano and T.
Hayashi, Organometallics, 2002, 21, 3062; where the authors also
report an unstable Fe(CO)4 complex.
6 R. Bartsch, F. G. N. Cloke, J. C. Green, R. M. Matos, J. F. Nixon, R. J.
Suffolk, J. L. Suter and D. J. Wilson, J. Chem. Soc., Dalton Trans.,
2001, 1013 and refs therein.
7 O. J. Scherer, T. Bruck and G. Wolmershauser, Chem. Ber., 1988, 121,
935.
8 This chemistry is quite well developed for phosphaferrocenes; see: F.
Mathey, Coord. Chem. Rev., 1994, 137, 1.
We thank CNRS, Ecole Polytechnique and the EC (COST
action D12-026) for support.
9 H. C. L. Abbenhuis, U. Burckhardt, A. Gramlich, A. Martelletti, J.
Spencer, I. Steiner and A. Togni, Organometallics, 1996, 15, 1614.
10 T. Hayashi, A. Ohno, L. Shi-je, Y. Matsumoto, E. Fukuyo and K.
Yanagi, J. Am. Chem. Soc., 1994, 116, 4223.
Notes and references
† Selected spectroscopic data: 3a: (CDCl3, 298 K) 31P NMR d 242.7 [d,
2JPH 35.8 Hz] ppm. 3b: (CDCl3, 298 K) 31P{1H} NMR d 254.1 ppm.
11 S. Holand, M. Jeanjean and F. Mathey, Angew. Chem., Int. Ed., 1997,
36, 98; N. Seeboth, DEA thesis, Ecole polytechnique, 2002.
12 A. J. Carty, D. MacLaughlin and D. Nucciarone, in Phosphorus-31 nmr
spectroscopy in stereochemical analysis. Organic compounds and metal
complexes, ed. L. D. Quin and J. G. Verkade, VCH, 1987, p. 559.
13 Efficient syntheses of 2,5-disilyl substituted phospholides using zirco-
nocene chemistry are available (e.g. P. J. Fagan and W. A. Nugent, J.
Am. Chem. Soc., 1988, 110, 2310) and we have confirmed that 3b can
be prepared by protodesilylation of the product obtained from
[Li(PC4Me2-2,5-{SiMe3}2)] and [RuCp*Cl]4. However, extrapolating
these methods to unsymmetrically substituted pro-(planar-chiral) phos-
pholides remains relatively difficult: J. Hydrio, M. Gouygou, F.
Dallemer, J.-C. Daran and G. G. A. Balavoine, J. Organomet. Chem.,
2000, 595, 267; F.-X. Buzin, PhD thesis, Ecole polytechnique, 2001.
14 t-BuMe2SiCl may also be employed. Use of TMSCl is compromised by
a competing P-desilylation upon reaction with KOt-Bu.
2
1
13C{1H} NMR d 93.0 [d, JPC 7.4 Hz, CMe], 87.4 [s, Cp*], 80.7 [d, JPC
59.6 Hz, PCH], 13.4 [s, CMe], 11.1 [s, Cp*] ppm. MS (EI, 70 eV): m/z (%)
347 (100) [M+ 2 H], 332 (58) [M+ 2 H 2 CH3]. 4: (C6D6, 333 K) 31P{1H}
NMR d 203.1 ppm. 5a: (THF, 298 K) 31P{1H} NMR d 123.8 ppm. 5b:
31P{1H} NMR d 113.3 ppm. 6a: (THF, 298 K) 31P{1H} NMR d 22.6 ppm.
6b: (CDCl3, 298 K) 31P{1H} NMR d 221.1 ppm. 13C{1H} NMR d 97.3 [d,
2JPC 4.5 Hz, CMe], 96.3 [d, 2JPC 8.2 Hz, CMe], 87.3 [s, Cp*], 83.7 [d, 1JPC
62.2 Hz, PCH], 83.4 [d, 1JPC 81.3 Hz, PCSi], 19.4 [4C, s, SiCCH], 19.3 [2C,
s, SiCCH], 15.0 [s, CMe], 14.3 [s, CMe], 12.7 [2C, s, SiCH], 12.6 [1C, s,
SiCH], 11.0 [s, Cp*] ppm. MS (EI, 70 eV): m/z (%) 505 (87) [MH+], 462
(100) [MH+-C3H7]. 7a: (CDCl3, 298K) 31P{1H} NMR d 220.4 [q, 4JPF 59.5
Hz] ppm. 7b: (CDCl3, 298 K) 31P{1H} NMR d 228.1 [q, JPF 61.4 Hz]
4
ppm. 13C{1H} NMR d 187.0 [dq, 2JPC 23.0 Hz 2JFC 33.3 Hz, COCF3], 112.4
1
2
2
[q, JFC 294.3 Hz, C], 100.4 [d, JPC 8.0 Hz, CMe], 94.1 [d, JPC 4.6 Hz,
CMe], 90.2 [s, Cp*], 87.0 [dq, 1JPC 58.6, 3JFC 4.6 Hz, PCCO], 81.0 [d, 1JPC
71.3 Hz, PCH], 13.9 [s, CMe], 12.5 [s, CMe], 10.4 [s, Cp*] ppm. MS (EI,
15 H. L. Hassinger, R. M. Soll and G. W. Gribble, Tetrahedron Lett., 1998,
39, 3095.
16 L. Brassat, B. Ganter and C. Ganter, Chem.-Eur. J., 1998, 4, 2148.
70 eV): m/z (%) 444 (54) [M+], 428 (37) [M+ 2 O], 344 (33) [M+
2
COCF3], 57 (100). 8: (CDCl3, 298 K) 31P{1H} NMR d 248.0 ppm.
CHEM. COMMUN., 2002, 2976–2977
2977