10.1002/anie.201915814
Angewandte Chemie International Edition
For reviews on Mannich-type reactions: g) M. Arend, B. Westermann,
N. Risch, Angew. Chem. Int. Ed. 1998, 37, 1044−1070; Angew. Chem.
1998, 110, 1096-1122; h) S. Kobayashi, H. Ishitani, Chem. Rev. 1999,
99, 1069−1094.
[15] a) D. C. Blakemore, L. Castro, I. Churcher, D. C. Rees, A. W.
Thomas, D. M. Wilson, A. Wood, Nat. Chem. 2018, 10, 383–394; b)
W. R. Pitt, D. M. Parry, B. G. Perry, C. R. Groom, J. Med. Chem.
2009, 52, 2952–2963.
[5] a) A. I. Leonov, D. S. Timofeeva, A. R. Ofial, H. Mayr, Synthesis
2019, 1157−1170. For a freely accessible database of nucleophilicity
parameters N of silyl enolates, see:
[16] a) A. Job, C. F. Janeck, W. Bettray, R. Peters, D. Enders, Tetrahedron
2002, 58, 2253–2329; b) R. Cano, A. Zakarian, G. P. McGlacken,
Angew. Chem. Int. Ed. 2017, 56, 9278–9290; Angew. Chem. 2017,
129, 9406 –9418.
[6] For a review of reactions of alkyl chlorides with silyl enolates via SN1
pathways, see a) M. T. Reetz, Angew. Chem. Int. Ed. 1982, 21, 96–
108; Angew. Chem. 1982, 94, 97-109. For selected examples: b) M. T.
Reetz, W. F. Maier, Angew. Chem. Int. Ed. 1978, 17, 48–49; Angew.
Chem. 1978, 90, 50; c) Y. Nishimoto, M. Yasuda, A. Baba, Org. Lett.
2007, 9, 4931–4934; d) Y. Nishimoto, T. Saito, M. Yasuda, A. Baba,
Tetrahedron 2009, 65, 5462–5471.
[7] a) Radicals in Organic Synthesis, P. Renaud, M. P. Sibi (Eds), Wiley-
VCH: Weinheim, Germany, 2001. b) Encyclopedia of Radicals in
Chemistry, Biology and Materials, C. Chatgilialoglu, A. Studer (Eds);
John Wiley & Sons, 2012. (c) M. Yan, J. C. Lo, J. T. Edwards, P. S.
Baran, J. Am. Chem. Soc. 2016, 138, 12692−12714.
[8] Selected examples: a) K. Miura, M. Taniguchi, K. Nozaki, K. Oshima,
K. Utimoto, Tetrahedron Lett. 1990, 31, 6391–6394; b) K. Mikami, Y.
Tomita, Y. Ichikawa, K. Amikura, Y. Itoh, Org. Lett. 2006, 8, 4671–
4673; c) P. V. Pham, D. A. Nagib, D. W. C. MacMillan, Angew.
Chem. Int. Ed. 2011, 50, 6119−6122; Angew. Chem. 2011, 123, 6243–
6246.
[9] Selected examples: a) E. Baciocchi, E. Muraglia, Tetrahedron Lett.
1994, 35, 2763−2766; b) D. P. Curran, S.-B. Ko, Tetrahedron Lett.
1998, 39, 6629–6632; c) E. Arceo, E. Montroni, P. Melchiorre,
Angew. Chem. Int. Ed. 2014, 53, 12064−12068; Angew. Chem. 2014,
126, 12260–12264; d) N. Esumi, K. Suzuki, Y. Nishimoto, M.
Yasuda, Org. Lett. 2016, 18, 5704−5707.
[17] For the few catalytic examples reported so far, see: a) A. Mastracchio,
A. A. Warkentin, A. M. Walji, D. W. C. MacMillan, Proc. Natl. Acad.
Sci. U.S.A., 2010, 107, 20648–20651; b) E. Arceo, A. Bahamonde, G.
Bergonzini, P. Melchiorre, Chem. Sci. 2014, 5, 2438–2442; c) Y. Zhu,
L. Zhang, S. Luo, J. Am. Chem. Soc. 2014, 136, 14642–14645.
[18] a) D. A. Nicewicz, D. W. C. MacMillan, Science 2008, 322, 77–80.
For a review: b) M. Silvi, P. Melchiorre, Nature 2018, 554, 41–49.
[19] P. Melchiorre, Angew. Chem. Int. Ed. 2012, 51, 9748–9770; Angew.
Chem. 2012, 124, 9886–9909.
[20] For an example of asymmetric catalytic α-cyanoalkylation of
aldehydes using easily reducible bromoacetonitrile as the radical
precursor, see: E. R. Welin, A. A. Warkentin, J. C. Conrad, D. W. C.
MacMillan, Angew. Chem. Int. Ed. 2015, 54, 9668−9672;
Angew.Chem. 2015, 127, 9804–9808.
[21] Substrates bearing thio functions, including xanthates, have been
extensively used in stoichiometric amounts to generate radicals, see:
a) D. H. R. Barton, S. Z. Zard, Pure Appl. Chem. 1986, 58, 675–684;
b) S. Z. Zard, Angew. Chem. Int. Ed. 1997, 36, 672–685; Angew
Chem. 1997, 109, 724-737. For strategies based on xanthate
derivatives to synthesize ketones, see: c) M. R. Heinrich, S. Z. Zard,
Org. Lett. 2004, 6, 4969-4972; d) S. Z. Zard, Acc. Chem. Res. 2018,
51, 1722−1733; d) S. Z. Zard, Helv. Chim. Acta 2019, 102, e1900134.
[22] With the aim to evaluate its direct implication within the mechanistic
path, we synthesized the adduct of type I by reacting equimolar
amounts of the dithiocarbonyl anion A and chloroacetonitrile 2a. 10
mol% of this type I intermediate could effectively promote the model
reaction (3a formed in 95% yield). In addition, light irradiation of
adduct I in the presence of TEMPO led to the formation of the
cyanomethyl-TEMPO adduct in 60% yield (see Section E4 in the
Supporting Information for details).
[10] The following protocols are effective for a wide scope of alkyl
electrophiles, since unstabilized primary radicals as well as secondary
and tertiary alkyl radicals can be successfully used. However, they are
limited to acetophenone-derived silyl enol ethers: a) W. Kong, C. Yu,
H. An, Q. Song, Org. Lett. 2018, 20, 349−352; b) M.-C. Fu, R. Shang,
B. Zhao, B. Wang, Y. Fu, Science 2019, 363, 1429–1434.
[11] M. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81,
6898–6926.
[23] Cross-coupling of the α-oxo radical IV and the sulfur-centered radical
III cannot be excluded. This process would provide the exact same
product of the SET manifold proposed in Figure 4, since the ensuing
adduct would collapse to afford oxocarbenium ion V and catalyst A.
This alternative mechanistic pathway is detailed in Figure S21 of the
Supporting information.
[24] This dimerization behavior could infer a persistent radical character to
intermediate III, see: a) D. Leifert, A. Studer Angew. Chem. Int. Ed.
DOI: 10.1002/anie.201903726; b) K. S. Focsaneanu, J. C. Scaiano,
Helv. Chim. Acta. 2006, 89, 2473–2482.
[12] S. Fukuzumi, M. Fujita, J. Otera, Y. Fujita, J. Am. Chem. Soc. 1992,
114, 10271–10278.
[13] a) B. Schweitzer-Chaput, M. A. Horwitz, E. de Pedro Beato, P.
Melchiorre, Nat. Chem. 2019, 11, 129–135; b) S. Cuadros, M. A.
Horwitz, B. Schweitzer-Chaput, P. Melchiorre, Chem. Sci. 2019, 10,
5484–5488; c) D. Mazzarella, G. Magagnano, B. Schweitzer-Chaput,
P. Melchiorre, ACS Catal. 2019, 9, 5876−5880.
[14] For a study discussing the high nucleophilicity of dithiocarbonate and
dithiocarbamate anions of type A, see: X.-H. Duan, B. Maji, H. Mayr,
Org. Biomol. Chem. 2011, 9, 8046–8050.
5
This article is protected by copyright. All rights reserved.