LETTER
Synthesis of Novel Chiral Thiophene-, Benzothiophene- and Benzofuran-Oxazoline Ligands
2085
(5) (a) Tietze, L. F.; Thede, K. Synlett 2000, 10, 1470.
Table 1 Asymmetric Allylation with Various Ligands
(b) Tietze, L. F.; Thede, K.; Sannicolò, F. Chem. Commun.
2000, 583. (c) Tietze, L. F.; Thede, K. Chem. Commun.
1999, 18, 1811. (d) Tietze, L. F.; Thede, K.; Sannicolò, F.
Chem. Commun. 1999, 1811.
Entry
Ligand
Time (h)
Yield (%)
ee (%)a
1
2
3
4
5
6
7
8
6
7
14
14
14
83
75
(6) Peer, M.; de Jong, J. C.; Kiefer, M.; Langer, T.; Rieck, H.;
Schell, H.; Sennhenn, P.; Sprinz, J.; Steinhagen, H.; Wiese,
B.; Helmchen, G. Tetrahedron 1996, 52, 7547.
86
88
8
89
86
(7) Synthesis of Ligand 9: To a suspension of benzothiophene-
3-carboxylic acid (1.0 g, 5.6 mmol) in DMF (0.5 mL) and
toluene (10 mL), oxalyl chloride (2.13 g, 16.8 mmol) was
added dropwise at 0 °C with stirring, which was continued
for 3 h at r.t. The solvent was removed in vacuo and the
crude acid chloride dissolved in CH2Cl2 (20 mL). This
solution was added dropwise to a mixture of (S)-valinol (865
mg, 6.7 mmol) and Et3N (1.41 g, 14 mmol) in CH2Cl2 (50
mL). After stirring overnight, 1 N HCl (50 mL) was added,
the aqueous phase extracted twice with CH2Cl2 (50 mL) and
the combined organic layers dried over MgSO4. The solvent
was removed in vacuo and the residue dissolved in CH2Cl2
(50 mL). After the addition of NEt3 (1.41 g, 14 mmol) the
solution was cooled to 0 °C and MsCl (767 mg, 6.7 mmol)
added dropwise. After complete conversion (TLC, n-
pentane/EtOAc = 1:1) the solvent was removed in vacuo,
MeOH (20 mL) added followed by powdered KOH (1.56 g,
28 mmol) and the mixture stirred for 3 h. After removal of
methanol in vacuo water (60 mL) was added and the mixture
extracted with ether (2 50 mL). Drying of the organic
layers over MgSO4 gave the crude oxazoline, which was
purified by column chromatography (Et2O/pentane = 1:10)
to afford 900 mg (3.7 mmol, 66% over 3 steps) of a yellow
oil, which solidified at –20 °C. The oxazoline was dissolved
in dry Et2O (50 mL) and treated with n-BuLi (4.1 mmol of a
2.2 M solution in hexane) at –78 °C. After 5 min PPh2Cl
(977 mg, 4.4 mmol) was added and the cooling bath
removed with continuation of stirring for 1 h. Afterwards the
solvent was removed in vacuo and the residue purified by
column chromatography (n-pentane:Et2O = 10:1) to give
b
9
2
92
97.0
10
11
2
6
14
1c
91
94
89
86
97/72
79
99/98.53c,d
94
3
14
a Determined by chiral HPLC using a chiracel OD-column with
hexane/isopropanol 99:1 as eluent.
b Reaction was carried out at 0 °C.
c Reaction at r.t.
Acknowledgment
Generous financial support from the Deutsche Forschungsgemein-
schaft (SFB 416) and the Fonds der Chemischen Industrie is grate-
fully acknowledged. We are also indebted to the BASF AG, the
Bayer AG, the Degussa AG, the Dragoco Gerberding & Co. AG,
Wacker-Chemie GmbH for generous gifts of chemicals.
References
(1) Reviews: (a) Helmchen, G.; Pfaltz, A. Acc. Chem. Res.
2000, 33, 336. (b) Johannsen, M.; Jørgensen, K. A. Chem.
Rev. 1998, 98, 1689. (c) Shibasaki, M.; Boden, C. D. J.;
Kojima, A. Tetrahedron 1997, 53, 7371. (d) Trost, B. M.;
Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
(2) (a) Oestreich, M.; Dennison, P. R.; Kodanko, J. J.; Overman,
L. E. Angew. Chem. Int. Ed. 2001, 40, 1439. (b) Ashimori,
A.; Bachand, B.; Overman, L. E.; Poon, D. J. J. Am. Chem.
Soc. 2000, 122, 192. (c) Ashimori, A.; Overman, L. E. J.
Org. Chem. 1992, 57, 4571.
(3) (a) Bergner, E. J.; Helmchen, G. Eur. J. Org. Chem. 2000,
5072. (b) Schleicher, S.; Helmchen, G. Eur. J. Org. Chem.
1999, 5072. (c) Pfaltz, A.; von Matt, P. Angew. Chem., Int.
Ed. Engl. 1993, 32, 566. (d) Helmchen, G.; Sprinz, J.
Tetrahedron Lett. 1993, 34, 1769.
(4) (a) Trost, B. M.; Bunt, R. C.; Lemoine, R. C.; Calkins, T. L.
J. Am. Chem. Soc. 2000, 122, 5968. (b) Trost, B. M.; Oslob,
J. D. J. Am. Chem. Soc. 1999, 121, 3057.
20
ligand 9, as a white foam (1.15 g, 2.7 mmol, 73%). [ ]D
–72.5 (c 1.0, CHCl3); Rf 0.26 (n-pentane/Et2O = 10:1);
1H NMR (300 MHz, CDCl3): = 0.80 (d, J = 7.0 Hz, 3 H,
CH3), 0.89 (d, J = 7.0 Hz, 3 H, CH3), 1.64 (oct, J = 7.0 Hz,
1 H, CHMe2), 3.87 (t, J = 8.0 Hz, 1 H, 4-Ha), 3.98 (ddd,
J = 9.0, 8.0, 7.0 Hz, 1 H, 3-H), 4.14 (dd, J = 9.0, 8.0 Hz, 1 H,
4-Hb), 7.27–7.48 (m, 12 H, Ph-H, 5 -H, 6 -H), 7.66 (d,
J = 8.0 Hz, 1 H, 4 -H*), 8.56 (d, J = 8.0 Hz, 1 H, 7-H*), (the
assignments of the signals with an asterisk may have to be
exchanged); 13C NMR (150 MHz, CDCl3): = 18.39 (CH3),
18.67 (CH3), 32.82 [CH(CH3)2], 69.50 (C-3 ), 72.37 (C-4 ),
123.39 (C-H), 124.58 (Ph-C4), 124.59 (Ph-C4), 124.80 (CH),
127.95 (d, J = 16.4 Hz, C-3), 128.26 (d, J = 2.7 Hz, Ph-C3),
128.31 (d, J = 2.3 Hz, Ph-C3), 129.00 (C-H), 129.20 (C-H),
133.46 (d, J = 20.9 Hz, Ph-C2), 133.87 (d, J = 21.0 Hz, Ph-
C2), 136.74 (d, J = 9.9 Hz, Ph-C1), 137.05 (d, J = 10.3 Hz,
Ph-C1), 139.39 (d, J = 2.1 Hz, C-3a), 141.69 (C-7a), 147.55
(d, J = 41.8 Hz, C-2), 159.47 (d, J = 3.3 Hz, C-1 ); 31P NMR
(80 MHz, CDCl3): = –13.19; MS (EI): m/z = 429 (M+), 358,
338; Anal. Calcd for C26H24NOPS: C, 72.70; H, 5.63%.
Synlett 2002, No. 12, 2083–2085 ISSN 0936-5214 © Thieme Stuttgart · New York