large-scale processes. A variety of Co,8 Ni,9 In,10 Cu,11 and
Fe12 catalysts have been afterward explored for the im-
provement of reaction conditions for S-arylation. How-
ever, all these metal-catalyzed reactions invariably require
foul-smelling, volatile, and expensive arenethiols, which
are rather less available and prone to oxidative homo-
coupling.13 To resolve these problems, disulfides have also
been tried,14 albeit requiring an stoichiometric equivalent
of the reductants. Hartwig has nicely demonstrated the
Scheme 1. Synthesis of Unsymmetrical Sulfides
t
catalytic use of a Pd(OAc)2ÀCyPFÀ Bu complex for a
remarkably improved synthesis of unsymmetrical diaryl
sulfides from TIPSÀSH and two different aryl halides.15
To have a viable alternative to thiols, use of different other
sulfur sources, namely thiourea,16 thiolates,17 potassium
Table 1. Optimization of Reaction Conditionsa
(7) (a) Barbieri, R. S.; Bellato, C. R.; Dias, A. K. C.; Massabni, A. C.
Catal. Lett. 2006, 109, 171. (b) Fernandez-Rodriguez, M. A.; Shen, Q.;
Hartwig, J. F. Chem.;Eur. J. 2006, 12, 7782. (c) Fernandez-Rodrıguez,
M. A.; Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 2180. (d)
Murata, M.; Buchwald, S. L. Tetrahedron 2004, 60, 7397. (e) Li, G. Y.
Angew. Chem., Int. Ed. 2001, 40, 1513. (f) Jiang, Z.; She, J.; Lin, X. Adv.
Synth. Catal. 2009, 351, 2558. (g) Iranpoor, N.; Firouzabadi, H.;
Rostami, A. Appl. Organometal. Chem. 2013, 27, 501. (h) Bastug, G.;
Nolan, S. P. J. Org. Chem. 2013, 78, 9303. (i) Valente, C.; C-alimsiz, S.;
Hoi, K. H.; Mallik, D.; Sayah, M.; Organ, M. G. Angew. Chem., Int. Ed.
2012, 51, 3314. (j) Wang, L.; Zhou, W.-Y.; Chen, S.-C.; He, M.-Y.;
Chen, Q. Adv. Synth. Catal. 2012, 354, 839.
(8) (a) Wong, Y.-C.; Jayanth, T. T.; Cheng, C.-H. Org. Lett. 2006, 8,
5613. (b) Lan, M.-T.; Wu, W.-Y.; Huang, S.-H.; Luo, K.-L.; Tsai, F.-Y.
RSC Adv. 2011, 1, 1751.
(9) (a) Xu, X. ÀB.; Liu, J.; Zhang, J. J.; Wang, Y.-W.; Peng, Y. Org.
Lett. 2013, 15, 550. (b) Zhang, Y.; Ngeow, K. N.; Ying, J. Y. Org. Lett.
2007, 9, 3495. (c) Zhang, J.; Medley, C. M.; Krause, J. A.; Guan, H.
Organometallics 2010, 29, 6393.
entry
catalyst (mol %)
organic ionic base
yieldb (%)
1
[DBU][HOAc]
[DBU][HOAc]
[DBU][HOAc]
[DBU][HOAc]
[DBU][HOAc]
[DBU][HOAc]
[DBU][HOAc]
[DBU][HOAc]
[DBU][HOAc]
DBU
nil
25
30
24
35
87
10
12
35
10
30
60
45
nil
2
CoCl2 6H2O (10)
3
3
FeCl3 (10)
CdI2 (10)
4
5
NiCl2 6H2O (10)
3
6
CuI (10)
7
CuBr (10)
8
Cu(OAc)2 H2O (10)
3
9
CuCl2 2H2O (10)
3
10
11
12
13
14
CuI (10)
CuI (10)
CuI (10)
CuI (10)
CuI (10)
Bmim[OH]
[DBU][n-Pr]
[DBU][n-Bu]
[DBU][TFA]
(10) (a) Reddy, V. P.; Kumar, A. V.; Swapna, K.; Rao, K. R. Org.
Lett. 2009, 11, 1697. (b) Reddy, V. P.; Swapna, K.; Kumar, A. V.; Rao,
K. R. J. Org. Chem. 2009, 74, 3189.
a Reaction conditions: 1b (1.2 mmol), 2a (1 mmol), CuI (10 mol %),
[DBU][HOAc] (1mL),MW60W,130°C, 10 min. b Isolated yield based on 2a.
(11) (a) Uyeda, C.; Tan, Y.; Fu, G. C.; Peters, J. C. J. Am. Chem. Soc.
2013, 135, 9548. (b) Zhang, S.-L.; Fan, H.-J. Organometallics 2013, 32,
4944. (c) Bahekar, S. S.; Sarkate, A. P.; Wadhai, V. M.; Wakte, P. S.;
Shinde, D. B. Catal. Commun. 2013, 41, 123. (d) Rout, L.; Sen, T. K.;
Punniyamurthy, T. Angew. Chem., Int. Ed. 2007, 46, 5583. (e) Ma, D.;
Cai, Q. Acc. Chem. Res. 2008, 41, 1450. (f) Ku, X.; Huang, H.; Jiang, H.;
Liu, H. J. Comb. Chem. 2009, 11, 338. (g) Bhadra, S.; Sreedhar, B.; Ranu,
B. C. Adv. Synth. Catal. 2009, 351, 2369. (h) Kabir, M. S.; Lorenz, M.;
Van Linn, M. L.; Namjoshi, O. A.; Ara, S.; Cook, J. M. J. Org. Chem.
2010, 75, 3626. (i) Huang, Y.-B.; Yang, C.-T.; Yi, J.; Deng, X.-J.; Fu, Y.;
Liu, L. J. Org. Chem. 2011, 76, 800. (j) Yang, H.; Xi, C.; Miao, Z.; Chen,
R. Eur. J. Org. Chem. 2011, 3353. (k) Carril, M.; SanMartin, R.;
Domınguez, E.; Tellitu, I. Chem.;Eur. J. 2007, 13, 5100. (l) Gonzalez-
Arellano, C.; Luque, R.; Macquarrie, D. J. Chem. Commun. 2009, 1410.
(m) Chen, C.-K.; Chen, Y.-W.; Lin, C.-H.; Lin, H.-P.; Lee, C.-F. Chem.
Commun. 2010, 46, 282. (n) Kamal, A.; Srinivasulu, V.; Murty, N. S. R.
C.; Shankaraiah, N.; Nagesh, N.; Reddy, T. S.; Rao, A. V. S. Adv. Synth.
Catal. 2013, 355, 2297.
(12) (a) Correa, A.; Carril, M.; Bolm, C. Angew. Chem., Int. Ed. 2008,
47, 2880. (b) Wu, J. R.; Lin, C. H.; Lee, C. F. Chem. Commun. 2009,
4450. (c) Buchwald, S. L.; Bolm, C. Angew. Chem., Int. Ed. 2009, 48,
5586. (d) Wu, W.-Y.; Wang, J.-C.; Tsai, F.-Y. Green Chem. 2009, 11,
326.
(13) (a) Prasad, D. J. C.; Sekar, G. Org. Lett. 2011, 13, 1008. (b) Jiang,
Y.; Qin, Y.; Xie, S.; Zhang, X.; Dong, J.; Ma, D. Org. Lett. 2009, 11,
5250.
ethyl xanthogenate,18 thiocyanate,19 metal sulfides,20 and
carbon disulfide,21 have been recently made to achieve the
formation of diaryl thioethers. The use of thiolates as
sulfur source is however limited to Pd/PÀligand as cata-
lyst, while that of thiourea is confined to the synthesis of
symmetrical disulfides,16a oralkylarylthioethers,16b asthis
method is suitable to generate alkyl thiolates only. Use of
potassium ethyl xanthogenate, thiocyanate, and metal
sulfides necessitates either ligands, highly polar solvents,
or long reaction time. Hence, it is important to find a
practical catalytic protocol to avoid volatile and foul-
smelling thiols and other sulfur sources to achieve highly
useful unsymmetrical aryl sulfides particularly. We have
just developed a new hydrothiolation method to achieve
vinyl sulfides by the reaction of sulfonyl hydrazides with aryl/
heteroarylÀacetylenes in the presence of [DBU][AcOH]/
acetic acid.22 Since the investigation implicated the use of
sulfonyl hydrazide as a new nucleophilic sulfur source, it was
imperative to explore the prospects of this novel thiol
surrogate for other demanding reactions. Considering the
advantages and green credentials of microwave (MW) in
current scenario, it was also thought worthwhile to exploit
(14) (a) Zhang, S.; Qian, P.; Zhang, M.; Hu, M.; Cheng, J. J. Org.
Chem. 2010, 75, 6732. (b) Kumar, S.; Engman, L. J. Org. Chem. 2006, 71,
5400. (c) Taniguchi, N. J. Org. Chem. 2007, 72, 1241.
ꢀ
(15) Fernandez-Rodrıguez, M. A.; Hartwig, J. F. Chem.;Eur. J.
2010, 16, 2355.
(16) (a) Kuhn, M.; Falk, F. C.; Paradies, J. Org. Lett. 2011, 13, 4100.
(b) Firouzabadi, H.; Iranpoor, N.; Gholinejad, M. Adv. Synth. Catal.
2010, 352, 119.
(17) Park, N.; Park, K.; Jang, M.; Lee, S. J. Org. Chem. 2011, 76,
4371.
(20) Li, Y.; Nie, C.; Wang, H.; Li, X.; Verpoort, F.; Duan, C. Eur. J.
Org. Chem. 2011, 7331.
(18) Prasad, D. J. C.; Sekar, G. Org. Lett. 2011, 13, 1008.
(19) Ke, F.; Qu, Y.; Jiang, Z.; Li, Z.; Wu, D.; Zhou, X. Org. Lett.
2011, 13, 454.
(21) Zhao, P.; Yin, H.; Gao, H.; Xi, C. J. Org. Chem. 2013, 78, 5001.
(22) Singh, R.; Raghuvanshi, D. S.; Singh, K. N. Org. Lett. 2013, 15,
4202.
Org. Lett., Vol. 15, No. 22, 2013
5875