E
K. Subramanian et al.
Letter
Synlett
external oxidant- and transition-metal-free conditions. The
practicability of the protocol was established by scaling up
the reaction, and its synthetic utility was demonstrated by
the direct synthesis of the bioactive compound phenaglay-
don.
(6) (a) Kärkäs, M. D. Chem. Soc. Rev. 2018, 47, 5786. (b) Liang, S.; Xu,
K.; Zeng, C.-C.; Tian, H.-Y.; Sun, B.-G. Adv. Synth. Catal. 2018,
360, 4266. (c) Zhang, P.; Chen, J.; Gao, W.; Xiao, Y.; Liu, C.; Xu, S.;
Yan, X.; Qin, D. Molecules 2019, 24, 696. (d) Liu, K.; Tang, S.; Wu,
T.; Wang, S.; Zou, M.; Cong, H.; Lei, A. Nat. Commun. 2019, 10,
639.
(7) Zhang, S.; Li, L.; Xue, M.; Zhang, R.; Xu, K.; Zeng, C. Org. Lett.
2018, 20, 3443.
(8) Kehl, A.; Breising, V. M.; Schollmeyer, D.; Waldvogel, S. R. Chem.
Eur. J. 2018, 24, 17230.
Conflict of Interest
The authors declare no conflict of interest
(9) (a) Wu, X.-F.; Gong, J.-L.; Qi, X. Org. Biomol. Chem. 2014, 12,
5807. (b) Uyanik, M.; Okamoto, H.; Yasui, T.; Ishihara, K. Science
2010, 328, 1376. (c) Finkbeiner, P.; Nachtsheim, B. J. Synthesis
2013, 45, 979. (d) Gao, W.-J.; Li, W.-C.; Zeng, C.-C.; Tian, H.-Y.;
Hu, L.-M.; Little, R. D. J. Org. Chem. 2014, 79, 9613. (e) Liang, S.;
Zeng, C. C.; Luo, X. G.; Ren, F. Z.; Tian, H. Y.; Sun, B. G.; Little, R.
D. Green Chem. 2016, 18, 2222.
Funding Information
K.S. would like to thank the University Grants Commission of India
(UGC) for providing a Senior Research Fellowship under the Basic Sci-
entific Research (BSR) program vide No. [F.25-1/2014-15, F.7-
(10) (a) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Funda-
mentals and Applications, 2nd ed; Wiley: New York, 2001.
(b) Moeller, K. D. Tetrahedron 2000, 56, 9527.
227/2009 dt. 16th Feb, 2015]
U
n
i
v
ersi
t
y
G
ra
n
t
s
C
o
m
m
i
si
o
n(F
.
2
5-1/2
0
1
4-1
5
, F
.
7-
2
2
7
/2
0
0
9
dt. 16t
h
F
e
b
, 2
0
1
5)
(11) Tu, Z.; Chu, W.; Zhang, J.; Dence, C. S.; Welch, M. J.; Mach, R. H.
Nucl. Med. Biol. 2005, 32, 437.
Supporting Information
Supporting information for this article is available online at
(12) Syroeshkin, M. A.; Krylov, I. B.; Hughes, A. M.; Alabugin, I. V.;
Nasybullina, D. V.; Sharipov, M. Y.; Gultyai, V. P.; Terent’ev, A. O.
J. Phys. Org. Chem. 2017, 30, e3744.
S
u
p
p
orti
n
gI
n
f
orm
a
ti
o
n
S
u
p
p
orti
n
gI
n
f
orm
a
ti
o
n
(13) 5-Methoxyphenanthridin-6(5H)-one2d (2a); Typical Proce-
dure
References and Notes
A 25 mL pear-shaped three-necked undivided cell equipped
with Pt plate anode (30 × 15 mm) and a Cu plate cathode (30 ×
15 mm) was charged with a solution of N-methoxybiphenyl-2-
carboxamide (1a; 0.5 mmol, 113.6 mg) and TBAI (0.1 mmol,
36.9 mg) in DMF (15 mL). The cell was then connected to a regu-
lated DC power supply, and constant-potential electrolysis was
carried at 2.5 V and 70 °C until 2 F mol–1 electric charge was
consumed (~5 h). The mixture was constantly stirred during the
electrolysis. The resulting mixture was diluted with EtOAc and
washed twice with H2O. The organic layers were collected,
dried (Na2SO4), filtered, and concentrated in vacuo. The crude
product was purified by column chromatography [silica gel, PE–
EtOAc (9.5:0.5)] to give a white solid; yield: 101.4 mg (90%); mp
102–104 °C.
(1) (a) Nishiyama, Y.; Fujii, S.; Makishima, M.; Hashimoto, Y.;
Ishikawa, M. Int. J. Mol. Sci. 2018, 19, 2090. (b) Qin, S.-Q.; Li, L.-
C.; Song, J.-R.; Li, H.-Y.; Li, D.-P. Molecules 2019, 24, 437.
(c) Matveenko, M.; Banwell, M. G.; Joffe, M.; Wan, S.; Fantino, E.
Chem. Biodivers. 2009, 6, 685. (d) Holl, V.; Coelho, D.; Weltin, D.;
Dufour, P.; Bischoff, P. Anticancer Res. 2000, 20, 3233.
(2) (a) Wang, G.-W.; Yuan, T.-T.; Li, D.-D. Angew. Chem. Int. Ed. 2011,
50, 1380. (b) Karthikeyan, J.; Cheng, C.-H. Angew. Chem. Int. Ed.
2011, 50, 9880. (c) Senthilkumar, N.; Parthasarathy, K.;
Gandeepan, P.; Cheng, C.-H. Chem. Asian J. 2013, 8, 2175.
(d) Yedage, S. L.; Bhanage, B. M. J. Org. Chem. 2016, 81, 4103.
(e) Pimparkar, S.; Jeganmohan, M. Chem. Commun. 2014, 50,
12116. (f) Sivakumar, G.; Vijeta, A.; Jeganmohan, M. Chem. Eur. J.
2016, 22, 5899.
1H NMR (400 MHz, CDCl3): = 8.57 (d, J = 8.1 Hz, 1 H), 8.28 (dd,
J = 8.3, 4.0 Hz, 2 H), 7.79 (t, J = 7.8 Hz, 1 H), 7.69 (d, J = 8.3 Hz, 1
H), 7.60 (q, J = 7.9, 7.4 Hz, 2 H), 7.41–7.32 (m, 1 H), 4.14 (s, 3 H).
13C NMR (100 MHz, CDCl3): = 157.3, 135.8, 133.0, 132.6, 130.0,
128.5, 128.1, 126.3, 123.2, 121.9, 118.6, 112.6, 62.7. GC/MS (EI,
70 eV): m/z (%) = 225.0 (39.0), 195.0 (100), 180.0 (28.7), 166.05
(58.2), 152.05 (16.0), 140.05 (28.6), 83.4 (13.7), 76.0 (13.2), 40.0
(13.9).
(3) Karthikeyan, J.; Haridharan, R.; Cheng, C.-H. Angew. Chem. Int.
Ed. 2012, 51, 12343.
(4) (a) Liang, D.; Yu, W.; Nguyen, N.; Deschamps, J. R.; Imler, G. H.;
Li, Y.; MacKerell, A. D. Jr.; Jiang, C.; Xue, F. J. Org. Chem. 2017, 82,
3589. (b) Liang, D.; Sersen, D.; Yang, C.; Deschamps, J. R.; Imler,
G. H.; Jiang, C.; Xue, F. Org. Biomol. Chem. 2017, 15, 4390.
(5) Moon, Y.; Jang, E.; Choi, S.; Hong, S. Org. Lett. 2018, 20, 240.
© 2021. Thieme. All rights reserved. Synlett 2021, 32, A–E