ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Direct C‑2 Arylation of 7‑Azaindoles:
Chemoselective Access to Multiarylated
Derivatives
Prakash Kannaboina,†,‡ K. Anilkumar,†,‡ S. Aravinda,‡ Ram A. Vishwakarma,‡ and
Parthasarathi Das*,†,‡
Academy of Scientific and Innovative Research (AcSIR) and Medicinal Chemistry
Division, Indian Institute of Integrative Medicine(CSIR), Jammu 180001, India
Received September 23, 2013
ABSTRACT
Pd-catalyzed direct CÀH arylation of N-methyl-7-azaindole at the C-2 position by diverse arylboronic acids was achieved at room temperature.
The method is general and was applied in chemoselective synthesis of multiarylated 7-azaindole derivatives bearing three different aryl groups at
the 2, 3, and 5 positions.
The azaindole ring system is a key structural unit present
in a number of therapeutically important molecules.1,2
Owing to the presence of an additional nitrogen atom in
the 7-azaindole ring system, when compared to indole,
this structural moiety possesses an advantage to act as a
hydrogen-bond donor as well as an acceptor framework,
a property that has been successfully utilized in drug
discovery.3À5 Marketed anticancer drug vemurafenib
(PLX-4032)6 and many other kinase inhibitors (Figure 1)
contain a C-arylated 7-azaindole moiety. A structureÀ
activity relationship (SAR) study reveals that C-arylation
in both the azole and azine ring plays a significant role in
kinase inhibition.7 Therefore, selective C-arylations of the
7-azaindole nucleus in a controlled manner will provide an
† Academy of Scientific and Innovative Research (AcSIR).
‡ Medicinal Chemistry Division.
(1) For reviews on 7-azaindole, see: (a) Song, J. J.; Reeves, J. T.;
Gallou, F.; Tan, Z.; Yee, N. K.; Senanayake, C. H. Chem. Soc. Rev.
ꢀ
(6) For vemurafenib see: 2011 FDA drug approval: Mullard, A.
Nature Rev. Drug Discov. 2012, 11, 91.
2007, 36, 1120. (b) Popowycz, F.; Routier, S.; Joseph, B.; Merour, J.-Y.
ꢀ
Tetrahedron 2007, 63, 1031. (c) Merour, J.-Y.; Routier, S.; Suzenet, F.;
(7) For kinase inhibition, see: (a) B-Rafinhibitor:Tang, J.;Hamajima,
T.; Nakano, M.; Sato, H.; Dickerson, S. H.; Lackey, K. E. Bioorg. Med.
Chem. Lett. 2008, 18, 4610. (b) Aurora kinase inhibitor:Dhanak, D.;
Newlander, K. A. Preparation of azaindoles as aurora kinase inhibitors for
the treatment of cancer. U.S. Patent US20070149561A1, 2007. (c) PI3K
inhibitor: Hong, S.; Lee, S.; Kim, B.; Lee, H.; Hong, S.-S.; Hong, S. Bioorg.
Med. Chem. Lett. 2010, 20, 7212. (d) Focal adhesion kinase inhibitor:
Heinrich, T.; Seenisamy, J.; Emmanuvel, L.; Kulkarni, S. S.; Bomke, J.;
Joseph, B. Tetrahedron 2013, 69, 4767.
(2) (a) Echalier, A.; Bettayeb, K.; Ferandin, Y.; Lozach, O.; Clement,
M.; Valette, A.; Linger, F.; Marquet, B.; Morris, J. C.; Endicott, J. A.;
Joseph, B.; Meijer, L. J. Med. Chem. 2008, 51, 737. (b) Tung, Y.-S.;
Coumar, M. S.; Wu, Y.-S.; Shiao, H.-Y.; Chang, J.-Y.; Liou, J.-P.;
Shukla, P.; Chang, C.-W.; Chang, C.-Y.; Kuo, C.-C.; Yeh, T.-K.; Lin,
C.-Y.; Wu, J.-S.; Wu, S.-Y.; Liao, C.-C.; Hsieh, H.-P. J. Med. Chem.
2011, 54, 3076.
€
Rohdich, F.; Greiner, H.; Esdar, C.; Krier, M.; Gradler, U.; Musil, D.
(3) For antitumor activity, see: Kim, K. S.; Zhang, L.; Schmidt, R.;
Cai, Z.-W.; Wei, D.; Williams, D. K.; Lombardo, L. J.; Trainor, G. L.;
Xie, D.; Zhang, Y.; An, Y.; Sack, J. S.; Tokarski, J. S.; Darienzo, C.;
Kamath, A.; Marathe, P.; Zhang, Y.; Lippy, J.; Jeyaseelam, R., Sr.;
Wautlet, B.; Henley, B.; Gullo-Brown, J.; Manne, V.; Hunt, J. T.;
Fargnoli, J.; Borzilleri, R. M. J. Med. Chem. 2008, 51, 5330.
(4) For antibacterial activity, see: Manchester, J. I.; Dussault, D. D.;
Rose, J. A.; Ann Boriack-Sjodin, P.; Uria-Nickelsen, M.; Ioannidis, G.;
Bist, S.; Fleming, P.; Hull, K. G. Bioorg. Med. Chem. Lett. 2012, 22,
5150.
J. Med. Chem. 2013, 56, 1160. (e) Tropomyosin-related kinases A (TrkA):
Hong, S.; Kim, J.; Seo, J. H.; Jung, K. H.; Hong, S.-S.; Hong, S. J. Med.
Chem. 2012, 55, 5337.
(8) For transition-metal-catalyzed direct arylation of heterocycle
reviews and selected examples, see: (a) Ackermann, L.; Vicente, R.;
Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792. (b) Hirano, K.;
Miura, M. Chem. Commun. 2012, 48, 10704. (c) Bellina, F.; Rossi, R.
Tetrahedron 2009, 65, 10269. (d) Hirano, K.; Miura, M. Synlett 2011,
294. (d) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev.
2011, 40, 5068. (e) Campeau, L.-C.; Fagnou, K. Chem. Soc. Rev. 2007,
36, 1058. (f) Kirchberg, S.; Tani, S.; Ueda, K.; Yamaguchi, J.; Studer, A.;
Itami, K. Angew. Chem., Int. Ed. 2011, 50, 2387. (g) Kim, Y. W.;
Niphakis, M. J.; Georg, G. I. J. Org. Chem. 2012, 77, 9496.
(5) For anti-inflammatory activity, see: Chen, G.; Liu, Z.; Zhang, Y.;
Shan, X.; Jiang, L.; Zhao, Y.; He, W.; Feng, Z.; Yang, S.; Liang, G. ACS
Med. Chem. Lett. 2013, 4, 69.
r
10.1021/ol4027478
XXXX American Chemical Society