4858 J ournal of Medicinal Chemistry, 2003, Vol. 46, No. 23
Kim et al.
(17) J acobson, K. A.; Gao, Z. G.; Chen, A.; Barak, D.; Kim, S. A.; Lee,
K.; Link, A.; van Rompaey, P.; van Calenbergh, S.; Liang, B. T.
Neoceptor Concept Based on Molecular Complementarity in
GPCRs: A Mutant Adenosine A3 Receptor with Selectively
Enhanced Affinity for Amine-Modified Nucleosides. J . Med.
Chem. 2001, 44, 4125-4136.
(18) Parr, I. B.; Horenstein, B. A. New Electronic Analogues of the
Sialyl Cation: N-Functionalized 4-Acetamido-2,4-dihydroxy-
piperidines. Inhibition of Bacterial Sialidases. J . Org. Chem.
1997, 62, 7489-7494.
(19) Lin, T.-S.; Zhu, J .-L.; Dutschman, G. E.; Cheng, Y.-C.; Prusoff,
W. H. Syntheses and Biological Evaluations of 3′-Deoxy-3′-C-
Branched-Chain-Substituted Nucleosides. J . Med. Chem. 1993,
36, 353-362.
expressing the human A3AR, and Dr. J oel Linden
(University of Virginia, Charlottesville, VA) for the gift
of CHO cells expressing the human A1AR and A2AARs.
S.-K.K. and Z.-G.G. thank Gilead Sciences (Foster City,
CA) for financial support. We thank Dr. Neli Melman
for technical assistance.
Su p p or tin g In for m a tion Ava ila ble: Synthetic methods
for preparation of compound 7. This material is available free
(20) Filichev, V. V.; Brandt, M.; Pedersen, E. B. Synthesis of an Aza
Analogue of the 2-Deoxy-d-ribofuranose and Its Homologues.
Carbohydr. Res. 2001, 333, 115-122.
(21) Vorbru¨ggen, H.; Krolikiewicz, K.; Bennua, B. Nucleoside Syn-
thesis with Trimethylsilyl Triflate and Perchlorate as Catalysts.
Chem. Ber. 1981, 114, 1234-1255.
(22) van Tilburg, E. W.; van der Klein, P. A. M.; von Frijtag Drabbe
Ku¨nzel, J .; de Groote, M.; Stannek, C.; Lorenzen, A.; IJ zerman,
A. P. 5′-O-Alkyl Ethers of N, 2-Substituted Adenosine Deriva-
tives: Partial Agonists for the Adenosine A1 and A3 Receptors.
J . Med. Chem. 2001, 44, 2966-2975.
(23) Kontoyianni, M.; DeWeese, C.; Penzotti, J . E.; Lybrand, T. P.
Three-Dimensional Models for Agonist and Antagonist Com-
plexes with â2-Adrenergic Receptor. J . Med. Chem. 1996, 39,
4406-4420.
(24) IJ zerman, A. P.; Von Frijtag Drabbe Ku¨nzel, J . K.; Kim, J .; J iang,
Q.; J acobson, K. A. Site-Directed Mutagenesis of the Human
Adenosine A2A Receptor. Critical Involvement of Glu13 in Agonist
Recognition. Eur. J . Pharmacol. 1996, 310, 269-272.
(25) Barbhaiya, H.; McClain, R.; IJ zerman, A.; Rivkees, S. A. Site-
Directed Mutagenesis of the Human A1 Adenosine Receptor:
Influences of Acidic and Hydroxy Residues in the First Four
Transmembrane Domains on Ligand Binding. Mol. Pharmacol.
1996, 50, 1635-1642.
(26) Colson, A.-O.; Perlman, J . H.; J insi-Parimoo, A.; Nussenzveig,
D. R.; Osman, R.; Gershengorn, M. C. A hydrophobic cluster
between transmembrane helices 5 and 6 constrains the thyro-
tropin-releasing hormone receptor in an inactive conformation.
Mol. Pharmacol. 1998, 54, 968-978.
(27) Weiss, H. M.; Grisshammer, R. Purification and characterization
of the human adenosine A2A receptor functionally expressed in
Escherichia coli. Eur. J . Biochem. 2002, 269, 82-92.
(28) Archer, E.; Maigret, B.; Escrieut, C.; Pradayrol, L.; Fourmy, D.
Rhodopsin crystal: new template yielding realistic models of
G-protein-coupled receptors? Trends Pharm. Sci. 2003, 24, 36-
40.
(29) Chambers, J . J .; Nichols, D. E. A homology-based model of the
human 5-HT2A receptor derived from an in silico activated
G-protein coupled receptor. J . Comput. Aided Mol. Des. 2002,
16, 511-520.
(30) Filipek, S.; Teller, D. C.; Palczewski, K.; Stenkamp, R. The
crystallographic model of rhodopsin and its use in studies of
other G protein-coupled receptors. Annu. Rev. Biophys. Biomol.
Struct. 2003, in press.
(31) J udson, R. Genetic Algorithms and Their Use in Chemistry. In
Reviews in Computational Chemistry, Vol. 10; Lipkowitz, K. B.,
Boyd, D. B., Eds.; VCH Publishers: New York. 1997; pp 1-73.
(32) Moro, S.; Li, A.-H.; J acobson, K. A. Molecular Modeling Studies
of Human A3 Adenosine Antagonists: Structural Homology and
Receptor Docking. J . Chem. Inform. Comput. Sci. 1998, 38,
1239-1248.
(33) Baraldi, P. G.; Cacciari, B.; Spalluto, G. P.; de las Infantas y
Villatoro, M. J . P.; Zocci, C.; Dionisotti, S.; Ongini, E. Pyrazolo-
[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine Derivatives: Potent and
Selective A2A Adenosine Antagonists. J . Med. Chem. 1996, 39,
1164-1171.
(34) Baraldi, P. G.; Cacciari, B.; Romagnoli, R.; Spalluto, G.; Mo-
nopoli, A.; Ongini, E.; Varani, K.; Borea, P. A. 7-Substituted
5-Amino-2-(2-furyl)pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrim-
idines as A2A Adenosine Receptor Antagonists: A Study on the
Importance of Modifications at the Side Chain on the Activity
and Solubility. J . Med. Chem. 2002, 45, 115-126.
(35) Baraldi, P. G.; Cacciari, B.; Spalluto, G.; Bergonzoni, M.;
Dionisotti, S.; Ongini, E.; Varani, K.; Borea, P. A. Design,
Synthesis, and Biological Evaluation of a Second Generation of
Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as Potent and
Selective A2A Adenosine Receptor Antagonists. J . Med. Chem.
1998, 41, 2126-2133.
(36) Baraldi, P. G.; Cacciari, B.; Moro, S.; Spalluto, G.; Pastorin, G.;
Ros, T. D.; Klotz, K.-N.; Varani, K.; Gessi, S.; Borea, P. A.
Synthesis, Biological Activity, and Molecular Modeling Inves-
tigation of New Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine
Derivatives as Human A3 Adenosine Receptor Antagonists. J .
Med. Chem. 2002, 45, 770-780.
Refer en ces
(1) Fredholm, B. B.; IJ zerman, A. P.; J acobson, K. A.; Klotz, K.-N.;
Linden, J . International Union of Pharmacology. XXV. Nomen-
clature and Classification of Adenosine Receptors. Pharmacol.
Rev. 2001, 53, 527-552.
(2) Cassada, D. C.; Tribble, C. G.; Long, S. M.; Kaza, A. K.; Linden,
J .; Rieger, J . M.; Rosin, D.; Kron, I. L.; Kern, J . A. Adenosine
A2A agonist reduces Paralysis after Spinal Cord Ischemia:
Correlation with A2A Receptor Expression on Motor Neurons.
Ann. Thorac. Surg. 2002, 74, 846-849.
(3) Ohta, A.; Sitkovsky, M. Role of G-Protein-Coupled Adenosine
Receptors in Downregulation of Inflammation and Protection
from Tissue Damage. Nature 2001, 414, 916-920.
(4) Kim, J .; Wess, J .; van Rhee, A. M.; Scho¨neberg, T.; J acobson, K.
A. Site-directed Mutagenesis Identifies Residues Involved in
Ligand Recognition in the Human A2a Adenosine Receptor. J .
Biol. Chem. 1995, 270, 13987-13997.
(5) Kim, J .; J iang, Q.; Glashofer, M.; Yehle, S.; Wess, J .; J acobson,
K. A. Glutamate Residues in the Second Extracellular Loop of
the Human A2a Adenosine Receptor Are Required for Ligand
Recognition. Mol. Pharmacol. 1996, 49, 683-691.
(6) J iang, Q.; van Rhee, M.; Kim. J .; Yehle, S.; Wess, J .; J acobson,
K. A. Hydrophilic Side Chains in the Third and Seventh
Transmembrane Helical Domains of Human A2A Adenosine
Receptors Are Required for Ligand Recognition. Mol. Pharmacol.
1996, 50, 512-521.
(7) Stone, T. W.; Collis, M. G.; Williams, M.; Miller, L. P.; Karasawa,
A.; Hillaire-Buys, D. Adenosine: Some Therapeutic Applications
and Prospects. In Pharmacological Sciences: Perspectives for
Research and Therapy in the Late 1990s; Cuello, A. C., Collier,
B., Eds.; Birkhauser Verlag: Basel, Switzerland, 1995; pp 303-
309.
(8) Richardson, P. J .; Kase, H.; J enner, P. G. Adenosine A2A Receptor
Antagonists as New Agents for the Treatment of Parkinson’s
Disease. Trends Pharmacol. Sci. 1997, 18, 338-344.
(9) Ledent, C.; Vaugeois, J . M.; Schiffmann, S. N.; Pedrazzini, T.;
El Yacoubi, M.; Vanderhaeghen, J . J .; Costentin, J .; Heath, J .
K.; Vassart, G.; Parmentier, M. Aggressiveness, Hypoalgesia and
High Blood Pressure in Mice Lacking the Adenosine A2A Recep-
tor. Nature (London) 1997, 388, 674-678.
(10) Baraldi, P. G.; Cacciari, B.; Spalluto, G.; Borioni, A.; Viziano,
M.; Dionisotti, S.; Ongini, E. Current Developments of A2A
Adenosine Receptor Antagonists. Curr. Med. Chem. 1995, 2,
707-722.
(11) IJ zerman, A. P.; van der Wenden, E. M.; van Galen, P. J . M.;
J acobson, K. A. Molecular Modeling of Adenosine Receptors. II.
The Ligand Binding Site on the Rat A2a Receptor. Eur. J .
Pharmacol.: Mol. Pharmacol. 1994, 268, 95-104.
(12) Gao, Z.-G.; Chen, A.; Barak, D.; Kim, S.-K.; Mu¨ller, C. E.;
J acobson, K. A. Identification by Site-directed Mutagenesis of
Residues Involved in Ligand Recognition and Activation of the
Human A3 Adenosine Receptor. J . Biol. Chem. 2002, 277,
19056-19063.
(13) Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Mo-
toshima, H.; Fox, B. A.; Le Trong, I.; Teller, D. C.; Okada, T.;
Stenkamp, T. E.; Yamamoto, M.; Miyano, M. Crystal Structure
of Rhodopsin: A G Protein-Coupled Receptor. Science 2000, 289,
739-745.
(14) Ballesteros, J . A.; Shi, L.; J avitch, J . A. Structural Mimicry in
G Protein-Coupled Receptors: Implications of the High-Resolu-
tion Structure of Rhodopsin for Structure-Function Analysis
of Rhodopsin-Like Receptors. Mol. Pharmacol. 2001, 60, 1-19.
(15) Gao, Z.-G.; Kim, S.-K.; Biadatti, T.; Chen, Q.; Lee, K.; Barak,
D.; Kim, S. G.; J ohnson, C. R.; J acobson K. A. Structural
Determinants of A3 Adenosine Receptor Activation: Nucleoside
Ligands at the Agonist/Antagonist Boundary. J . Med. Chem.
2002, 45, 4471-4484.
(16) Our most recent model of the human A3AR (by Dr. Soo-Kyung
Kim) is now available on the pdb ftp site. Entry in PDB
format (compressed): pdblo74.ent. Z.; Entry in mmCIF
latest_news.html#models_removal2.