M. Garavelli, C. Toniolo et al.
FULL PAPER
3JH,H ϭ 3.0, 6.0 Hz, 1 H, CHO), 4.77 (dq, JH,H ϭ 2.1, 6.0 Hz, 1
3
under the same conditions. Cells with path lengths of 0.1, 1.0 and
10 mm (with CaF2 windows) were used. Spectrograde CDCl3
2.1 Hz, 1 H, CHN), 5.60 (d, JH,H ϭ 2.1 Hz, 1 H, CHN), 5.62 (d, (99.8% D) was purchased from Fluka.
3
H, CHO), 4.86Ϫ4.98 (m, 3 H, CHN ϩ 2 CHO), 5.47 (d, JH,H
ϭ
3
3JH,H ϭ 1.8 Hz, 1 H, CHN) ppm.
1H NMR: The 1H NMR spectra were recorded with a Bruker AM
400 spectrometer. Measurements were carried in deuteriochloro-
form (99.96% D; Aldrich) and dimethyl sulfoxide ([D6]DMSO)
(99.96% D6; Acros Organics) with tetramethylsilane as the in-
ternal standard.
Boc-(L-Oxd)5-OBn (12): Yield: 50% (0.50 mmol, 0.42 g); m.p.
128Ϫ131 °C. [α]2D0 ϭ Ϫ215.8 (c ϭ 1.0, CH2Cl2). 1H NMR
(400 MHz, CDCl3): δ ϭ1.52 (s, 9 H, tBu), 1.59 (d, 3JH,H ϭ 6.6 Hz,
3
3
3 H, Me), 1.60 (d, JH,H ϭ 6.3 Hz, 3 H, Me), 1.64 (d, JH,H
ϭ
3
6.9 Hz, 3 H, Me), 1.66 (d, JH,H ϭ 6.6 Hz, 3 H, Me), 1.70 (d,
CD: The CD spectra were obtained with a Jasco J-710 spectropola-
rimeter. Cylindrical fused quartz cells of 10, 1, 0.2 and 0.1 mm path
length (Hellma) were used. The values are expressed in terms of
[θ]T, the total molar ellipticity (deg ϫ cm2 ϫ dmolϪ1). Spectrograde
MeOH (Baker) was used as solvent.
3JH,H ϭ 6.3 Hz, 3 H, Me), 4.55 (d, JH,H ϭ 3.6 Hz, 3 H, CHN),
3
3
4.62Ϫ4.74 (m, 3 H, 3 CHO), 4.85 (dq, JH,H ϭ 1.8, 6.6 Hz, CHO),
4.90 (dq, JH,H ϭ 1.8, 6.3 Hz, CHO), 5.14 (d, JH,H ϭ 12.0 Hz, 1
H, OCHHPh), 5.27 (d, JH,H ϭ 12.0 Hz, 1 H, OCHHPh), 5.48 (d,
3
2
2
3JH,H ϭ 1.8 Hz, 1 H, CHN), 5.59 (d, 3JH,H ϭ 1.5 Hz, 2 H, 2 CHN),
5.63 (d, 3JH,H ϭ 1.8 Hz, 1 H, CHN), 7.24Ϫ7.48 (m, 5 H, Ph) ppm.
13C NMR (400 MHz, CDCl3): δ ϭ20.6, 21.0, 21.2, 27.8, 60.9, 61.0,
61.1, 61.2, 61.9, 68.7, 72.7, 75.2, 75.3, 75.7, 75.9, 84.5128.3, 128.5,
128.7, 133.8, 150.8, 151.7, 152.0, 152.2, 152.3, 1661.6, 166.8, 167.1,
168.4 ppm. IR (Nujol): ν˜ ϭ 1832, 1792, 1706 cmϪ1 (CϭO).
C37H41N5O18 (843.74): calcd. C 52.67, H 4.90, N 8.30; found C
52.69, H 4.98, N 8.27.
Acknowledgments
M. G., F. B., S. L., C. T., and V. T. thank MURST (Cofin 2000,
Cofin 2001 and 60%), the Alma Mater Studiorum Ϫ University of
Bologna (Funds for Selected Topics) and CINECA (Grant K1I-
BOZZ1) for financial support.
Boc-(L-Oxd)5-OH (13): Yield: 91% (0.91 mmol, 0.69 g); m.p.
129Ϫ132 °C. [α]2D0 ϭ Ϫ190.9 (c ϭ 0.7, CH2Cl2). 1H NMR
(400 MHz, CDCl3): δ ϭ 1.52 (s, 9 H, tBu), 1.58Ϫ1.75 (m, 15 H, 5
[1]
S. H. Gellman, Acc. Chem. Res. 1998, 31, 173Ϫ180.
[2]
C. Tomasini, A. Vecchione, Org. Lett. 1999, 1, 2153Ϫ2156.
3
3
Me), 4.56 (d, JH,H ϭ 3.6 Hz, 3 H, CHN), 4.69 (dq, JH,H ϭ 1.9,
[3]
G. Valle, C. Toniolo, G. Jung, Liebigs Ann. Chem. 1986,
1809Ϫ1822.
S. Lucarini, C. Tomasini, J. Org. Chem. 2001, 66, 727Ϫ732.
A. J. Hopfinger, in Conformational Properties of Macromolec-
ules, Academic Press, New York, 1973, pp. 182Ϫ189, and refer-
ences therein.
3
6.3 Hz, CHO), 4.78Ϫ4.98 (m, 4 H, 4 CHO), 5.50 (d, JH,H
ϭ
3
2.1 Hz, 1 H, CHN), 5.61 (d, JH,H ϭ 1.8 Hz, 1 H, CHN), 5.64 (d,
3JH,H ϭ 1.5 Hz, 2 H, 2 CHN) ppm. 13C NMR (100 MHz, CDCl3):
δ ϭ 20.6, 21.3, 27.9, 60.8, 61.2, 61.3, 62.0, 73.0, 75.4, 75.9, 76.0,
84.8, 149.1, 151.2, 151.9, 152.1, 152.3, 152.4, 166.7, 167.1, 168.4,
169.0 ppm. IR (Nujol): ν˜ ϭ 1792, 1719, 1701 cmϪ1 (CϭO).
C10H15NO5 (753.20): calcd. C 47.81, 4.68, N 9.29; found C 47.76,
H 4.72, N 9.35.
[4]
[5]
[6] [6a]
S. M. Newman, A. Kutner, J. Am. Chem. Soc. 1951, 73,
[6b]
4199Ϫ4204.
J. B. Hyne, J. Am. Chem. Soc. 1959, 81,
6058Ϫ6061. [6c] W. D. Lubell, H. Rapoport, J. Org. Chem. 1989,
54, 3824Ϫ3831.
[7]
[8]
D. J. Ager, I. Prakash, D. R. Schaad, Chem. Rev. 1996, 96,
Computational Methods. All calculations were carried out using the
tools available in the Gaussian 98[29] package on an SGI Origin
3800 multiprocessor system, using the DFT/B3LYP functional (i.e.
835Ϫ875.
[8a] D. A. Evans, J. Bartroli, T. L. Shih, J. Am. Chem. Soc. 1981,
[8b]
103, 2127Ϫ2129.
D. A. Evans, M. D. Ennis, D. J. Mathre,
Becke’s
three-parameter
hybrid
functional
with
the
[8c]
J. Am. Chem. Soc. 1982, 104, 1737Ϫ1739.
V. Nelson, T. R. Taber, Top. Stereochem. 1982, 13, 1Ϫ115.
D. A. Evans, J.
LeeϪYangϪParr correlation functional).[30] This functional has
been shown to properly describe both standard hydrogen bonds,[31]
as well as nonclassical, weakly bound hydrogen bonds (such as
CϪH···OϭC interactions).[32] In particular, according to the literat-
ure,[33] a mixed basis set was used for the determination of the weak
CϪH···OϭC hydrogen bonds: a 6-31ϩG(d) basis set for the CiA,
HiA, O(iϩ1)D, C(iϩ1)D atoms (i ϭ 1 for dimer; i ϭ 1, 2 for trimer;
i ϭ 1, 2, 3 for tetramer; and i ϭ 1, 2, 3, 4 for pentamer) and a 6-
31G(d) for all other atoms. Since the O(iϩ1)D lone pairs strongly
interact with HiA, the use of diffuse functions on heavy atoms is
fundamental. Chemical shift simulations were performed by using
[9] [9a]
D. A. Evans, J. M. Takacs, L. R. McGee, M. D. Ennis, D.
J. Mathre, J. Bartroli, Pure Appl. Chem. 1981, 53, 1109Ϫ1127.
[9b]
[9c]
D. A. Evans, Aldrichim. Acta 1982, 15, 23Ϫ32.
D. A.
Evans, D. L. Rieger, M. T. Bilodeau, F. Urpi, J. Am. Chem.
Soc. 1991, 113, 1047Ϫ1049.
[10] [10a] D. A. Evans, K. T. Chapman, J. Bisaha, J. Am. Chem. Soc.
[10b]
1984, 106, 4261Ϫ4263.
D. A. Evans, K. T. Chapman, J.
[10c]
Bisaha, J. Am. Chem. Soc. 1988, 110, 1238Ϫ1256.
D. A.
Evans, K. T. Chapman, D. T. Hung, A. T. Kawaguchi, Angew.
Chem. Int. Ed. Engl. 1987, 26, 1184Ϫ1186.
E. Falb, A. Nudelman, A. Hassner, Synth. Commun. 1993,
23, 2839Ϫ2844.
[11]
the standard tools available in the Gaussian 98 package.[17]
A
[12] [12a]
standard 6-31G(d) basis set was used for all the atoms. The com-
puted data do not directly yield the chemical shift value, but only
a value for the isotropic magnetic tensor. The chemical shift value
is obtained from the equation δH ϭ 32.18 Ϫ σH, where 32.18 is the
calculated isotropic magnetic tensor for the protons in tetramethyl-
silane, and σH is the calculated isotropic magnetic tensor for the
investigated proton. This procedure has been recently validated and
applied by us for a similar molecular system.[15]
S. S. Canan Koch, A. R. Chamberlin, J. Org. Chem. 1993,
58, 2725Ϫ2737. [12b] J. R. Gage, D. A. Evans, Org. Synth. 1990,
68, 83Ϫ91.
[13]
[14]
[15]
G.-J. Ho, D. J. Mathre, J. Org. Chem. 1995, 60, 2271Ϫ2273.
M. Green, M. Berman, Tetrahedron Lett. 1990, 31, 5851Ϫ5854.
F. Bernardi, M. Garavelli, M. Scatizzi, C. Tomasini, V. Trigari,
M. Crisma, F. Formaggio, C. Peggion, C. Toniolo, Chem. Eur.
J. 2002, 8, 2516Ϫ2525.
[16] [16a] F. H. Allen, O. Kennard, R. Taylor, Acc. Chem. Res. 1983,
[16b]
16, 146Ϫ153.
P. Chakrabarti, S. Chakrabarti, J. Mol. Biol.
FT-IR: The FT-IR absorption spectra were recorded with a
PerkinϪElmer 1720X spectrophotometer, nitrogen-flushed,
equipped with a sample-shuttle device, at 2 cmϪ1 nominal resolu-
tion, averaging 100 scans. Solvent (base-line) spectra were recorded
[16c]
1998, 284, 867Ϫ873.
V. Nagarajan, V. Pattabhi, Acta Crystallogr. 1997, D53,
G. Felcy Fabiola, S. Krishnaswamy,
[16d]
316Ϫ320.
734Ϫ742.
J. Bella, H. M. Berman, J. Mol. Biol. 1996, 264,
Z. S. Derewenda, L. Lee, V. Derewenda, J. Mol.
[16e]
266
Eur. J. Org. Chem. 2003, 259Ϫ267